A simplified method to determine total fructans in food and pet food has been developed and validated. It follows the principle of AOAC method 997.08, i.e., high-performance anion exchange chromatographic (HPAEC) determination of total fructose released from fructans (F(f)) and total glucose released from fructans (G(f)) after enzymatic fructan hydrolysis. Unlike AOAC method 997.08, calculation of total fructans is based on the determination of F(f) alone. This is motivated by the inherent difficulty to accurately determine low amounts of G(f) since many food and pet food products contain other sources of total glucose (e.g., starch and sucrose). In this case, a correction factor g can be used (1.05 by default) to take into account the theoretical contribution of G(f). At levels >5% of total fructans and in commercial fructan ingredients, both F(f) and G(f) can and should be accurately determined; hence, no correction factor g is required. The method is suitable to quantify total fructans in various food and pet food products at concentrations >or=0.2% providing that the product does not contain other significant sources of total fructose such as free fructose or sucrose. Recovery rates in commercial fructan ingredients and in selected food and pet food ranged from 97 to 102%. As part of a measurement uncertainty estimation study, individual contributions to the total uncertainty (u) of the total fructan content were identified and quantified by using the validation data available. As a result, a correlation between the sucrose content and the total uncertainty of the total fructan content was established allowing us to define a limit of quantitation as a function of the sucrose content. One can conclude that this method is limited to food products where the sucrose content does not exceed about three times the total fructan content. Despite this limitation, which is inherent to any total fructan method based on the same approach, this procedure represents an excellent compromise with regard to accuracy, applicability, and convenience.
The measurement uncertainty of the determination of free and total carbohydrates in soluble (instant) coffee using high-performance anion exchange chromatography with pulsed amperometric detection according to AOAC Method 995.13 and ISO standard 11292 was calculated. This method is important with regard to monitoring several carbohydrate concentrations and is used to assess the authenticity of soluble coffee. We followed the recommendations of the ISO, Eurachem, and Valid Analytical Measurement (VAM) guides: individual uncertainty contributions u(x) were identified, quantified, and expressed as relative standard deviations related to each specific source u(x)/x or RSD(x). Eventually, they were combined to yield the standard uncertainty and the relative standard uncertainty of a given carbohydrate concentration, c, that is respectively u(c) and u(c)/c. As a result of our study, we could demonstrate that the overall repeatability of the carbohydrate determination in duplicate, RSD(r); the repeatability of the integration of the peak area of the carbohydrate standards, RSD(rarea(ST)); and the uncertainty of the linear calibration model used in our laboratory, RSD (linST), are the most significant contributions to the total uncertainty. The u(c)/c values thus determined differ for each carbohydrate and depend on their concentrations. The least standard uncertainties that can be achieved are about 2.5%. The question of trueness in the total carbohydrate assay (determination of monosaccharides obtained upon hydrolysis of coffee oligo- and polysaccharides) was addressed. For this purpose, we analyzed the data of 2 different collaborative trials in which our laboratory took part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.