In this work, an evaluation and quantification of the impact of using mixtures based on supercritical carbon dioxide “s-CO2” (s-CO2/COS, s-CO2/H2S, s-CO2/NH3, s-CO2/SO2) are made as a working fluid in simple and complex recompression Brayton s-CO2 power cycle configurations that have pressure drops in their components. These cycles are coupled with a solar thermal plant with parabolic-trough collector (PTC) technology. The methodology used in the calculation performance is to establish values of the heat recuperator total conductance (UAtotal) between 5 and 25 MW/K. The main conclusion of this work is that the cycle’s efficiency has improved due to using s-CO2 mixtures as working fluid; this is significant compared to the results obtained using the standard fluid (pure s-CO2). Furthermore, a techno-economic analysis is carried out that compares each configuration’s costs using pure s-CO2 and a mixture of s-CO2/COS with a molar fraction (70/30), respectively, as working fluid where relevant results are obtained. These results show that the best configuration in terms of thermal efficiency and cost is the RCC-RH for pure sCO2 with values of 41.25% and 2811 $/kWe, while for the mixture sCO2/COS, the RCC-2RH configuration with values of 45.05% and 2621 $/kWe is optimal. Using the mixture costs 6.75% less than if it is used the standard fluid (s-CO2).
An evaluation of the impact of using supercritical carbon dioxide mixtures (s-CO2/C2H6, s-CO2/CH4, s-CO2/Kr, and s-CO2/SF6) as a working fluid is made here for Brayton s-CO2 power cycles. The considered complex configurations include recompression with two reheating (RCC-2RH), recompression with three reheating (RCC-3RH), recompression with main compressor intercooling and two reheating (RCMCI-2RH), and recompression with main compressor intercooling and three reheating (RCMCI-3RH), which were coupled to a linear-focus solar system with Solar Salt (60% NaNO3/40% KNO3) as the heat transfer fluid (HTF). The design parameters evaluated the solar plant performance at the design point, the aperture area of the solar field, and variations in costs regarding the plant's total conductance (UAtotal). The methodology used to calculate the performance established the total conductance values of the heat recuperator (UAtotal) to between 5 and 25 MW/K. The main conclusion is that the cycle efficiency has a considerable improvement compared with that obtained using pure s-CO2. The s-CO2/Kr mixture with a molar fraction ratio of 30/70 increases the cycle efficiency between 7-11% relative to pure s-CO2 and as a function of the UAtotal. The s-CO2/CH4 mixture with a molar fraction of 45/55 increases between 3-7%, and the s-CO2/C2H6 and s-CO2/SF6 mixtures only increase between 1-2%. For the solar field unitary costs, the s-CO2/Kr mixture has the lowest cost at $29-34 million USD, which depends on the solar field aperture area and the UAtotal for the RCC-2RH and RCMCI-2RH configurations. Finally, the results demonstrate that variations in the working fluid properties play a significant role due to the positive impact on the increased thermal efficiency of the s-CO2 Brayton cycle when using the RCC and RCMCI configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.