No abstract
Prepared by the LSST Science Collaborations, with contributions from the LSST Project. PrefaceMajor advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our ability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Aided by rapid progress in information technology, current sky surveys are again changing the way we view and study the Universe, and the next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) all require wide-field repeated deep imaging of the sky in optical bands.The wide-fast-deep science requirement leads to a single wide-field telescope and camera which can repeatedly survey the sky with deep short exposures. The Large Synoptic Survey Telescope (LSST), a dedicated telecope with an effective aperture of 6.7 meters and a field of view of 9.6 deg 2 , will make major contributions to all these scientific areas and more. It will carry out a survey of 20,000 deg 2 of the sky in six broad photometric bands, imaging each region of sky roughly 2000 times (1000 pairs of back-to-back 15-sec exposures) over a ten-year survey lifetime.The LSST project will deliver fully calibrated survey data to the United States scientific community and the public with no proprietary period. Near real-time alerts for transients will also be provided worldwide. A goal is worldwide participation in all data products. The survey will enable comprehensive exploration of the Solar System beyond the Kuiper Belt, new understanding of the structure of our Galaxy and that of the Local Group, and vast opportunities in cosmology and galaxy evolution using data for billions of distant galaxies. Since many of these science programs will involve the use of the world's largest non-proprietary database, a key goal is maximizing the usability of the data. Experience with previous surveys is that often their most exciting scientific results were unanticipated at the time that the survey was designed; we fully expect this to be the case for the LSST as well.The purpose of this Science Book is to examine and document in detail science goals, opportunities, and capabilities that will be provided by the LSST. The book addresses key questions that will be confronted by the LSST survey, and it poses new questions to be addressed by future study. It contains previously available material (including a number of White Papers submitted to the ASTRO2010 Decadal Survey) as well as new results from a year-long campaign of study and evaluation. This book does not attempt to be complete; there are many ...
We present DLSCL J0916.2+2951 (z=0.53), a newly discovered major cluster merger in which the collisional cluster gas has become dissociated from the collisionless galaxies and dark matter. We identified the cluster using optical and weak lensing observations as part of the Deep Lens Survey. Our follow-up observations with Keck, Subaru, Hubble Space Telescope, and Chandra show that the cluster is a dissociative merger and constrain the dark matter self-interaction cross-section σ DM m −1 DM 7 cm 2 g −1 . The system is observed at least 0.7 ± 0.2 Gyr since first pass-through, thus providing a picture of cluster mergers 2-5 times further progressed than similar systems observed to date. This improved temporal leverage has implications for our understanding of merging clusters and their impact on galaxy evolution.
We present a sample of 17 newly discovered ultracool dwarf candidates later than ∼ M8, drawn from 231.90 arcmin 2 of Hubble Space Telescope Wide Field Camera 3 infrared imaging. By comparing the observed number counts for 17.5 ≤ J 125 ≤ 25.5 AB mag to an exponential disk model, we estimate a vertical scale height of z scl = 290 ± 25 (random) ± 31 (systematic) pc for a binarity fraction of f b = 0. While our estimate is roughly consistent with published results, we suggest that the differences can be attributed to sample properties, with the present sample containing far more substellar objects than previous work. We predict the object counts should peak at J 125 ∼ 24 AB mag due to the exponentially-declining number density at the edge of the disc. We conclude by arguing that trend in scale height with spectral type may breakdown for brown dwarfs since they do not settle onto the main sequence.
Wide, deep photometric surveys require robust photometric redshift estimates (photoz's) for studies of large-scale structure. These estimates depend critically on accurate photometry. We describe the improvements to the photometric calibration and the photo-z estimates in the Deep Lens Survey (DLS) from correcting three of the inputs to the photo-z calculation: the system response as a function of wavelength, the spectral energy distribution templates, and template prior probabilities as a function of magnitude. We model the system response with a physical model of the MOSAIC camera's CCD, which corrects a 0.1 magnitude discrepancy in the colours of type M2 and later stars relative to the SDSS z photometry. We provide our estimated z response function for the use of other surveys that used MOSAIC before its recent detector upgrade. The improved throughput curve, template set, and Bayesian prior lead to a 20 per cent reduction in photo-z scatter and a reduction of the bias by a factor of more than two. This paper serves as both a photo-z data release description for DLS and a guide for testing the quality of photometry and resulting photo-z's generally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.