The possible drivers and implications of an observed latitudinal cline in disease resistance of a host tree were examined. Mycosphaerella leaf disease (MLD) damage, caused by Teratosphaeria species, was assessed in five Eucalyptus globulus (Tasmanian blue gum) common garden trials containing open-pollinated progeny from 13 native-forest populations. Significant population and family within population variation in MLD resistance was detected, which was relatively stable across different combinations of trial sites, ages, seasons and epidemics. A distinct genetic-based latitudinal cline in MLD damage among host populations was evident. Two lines of evidence argue that the observed genetic-based latitudinal trend was the result of direct pathogen-imposed selection for MLD resistance. First, MLD damage was positively associated with temperature and negatively associated with a prediction of disease risk in the native environment of these populations; and, second, the quantitative inbreeding coefficient (Q ST ) significantly exceeded neutral marker F ST at the trial that exhibited the greatest MLD damage, suggesting that diversifying selection contributed to differentiation in MLD resistance among populations. This study highlights the potential for spatial variation in pathogen risk to drive adaptive differentiation across the geographic range of a foundation host tree species.
The impact of inbreeding and hybridization on fitness was compared in the two co‐occurring forest tree species, Eucalyptus ovata and E. globulus, aimed at explaining the rarity of their hybrids in nature. The success of selfing, open‐pollination and outcrossing of both species and interspecific hybridization was monitored from seed‐set to 10‐year’s growth in a field trial. There was a unilateral barrier to hybridization with seed‐set obtained only with E. ovata females. The F1 hybrids exhibited reduced viability compared to intraspecific cross‐types at virtually all stages of the life cycle and are clearly at a selective disadvantage compared with their open‐pollinated E. ovata half‐sibs with which they would directly compete in nature. Eucalyptus ovata and E. globulus overlap in their flowering time but the F1 hybrids flowered later with virtually no overlap with either species. The asynchronous flowering and reduced reproductive fitness of F1 hybrids would markedly limit the opportunity for advanced generation hybridization. Inbreeding similarly had a deleterious effect on the fitness of both species, and the F1 hybrids were most competitive with the E. ovata selfs. It is argued that changes in inbreeding levels of parental populations may be a key factor affecting the relative fitness of hybrids and their potential to impact on the pure species gene pool. Reduced fitness of the pure species through inbreeding may result in hybridization having its greatest evolutionary impact in small founder or relict populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.