Beta-thalassemia is due to a defect in the synthesis of the beta-globin chains, leading to alpha/beta imbalance, ineffective erythropoiesis, and chronic anemia. The spectrum of thalassemias is wide, with one end comprising thalassemia minor, which consists of a mild hypochromic microcytic anemia with no obvious clinical manifestations, while on the other end is thalassemia major, characterized by patients who present in their first years of life with profound anemia and regular transfusion requirements for survival. Along the spectrum lies thalassemia intermedia, a term developed to describe patients with manifestations that are neither mild enough nor severe enough to be classified in the spectrum’s extremes. Over the past decade, our understanding of β-thalassemia intermedia has increased tremendously with regards to molecular information as well as pathophysiology. It is now clear that β-thalassemia intermedia has a clinical presentation as well as complications associated with the disease that are different from those of β-thalassemia major. This review is designed to tackle issues related to β-thalassemia intermedia from the basic definition of the disease to paramedical issues, namely the quality of life in these patients. Genetics and pathophysiology are revisited, as well as the complications specific to this disease. These complications include effects on several organ systems, including the cardiovascular, hepatic, endocrine, renal, brain, and skeletal systems. Extramedullary hematopoiesis is also discussed in this article. Risk factors are highlighted and cutoffs are identified to minimize morbidities in β-thalassemia intermedia. Several treatment modalities are considered by shining a light on the pros and cons of each modality, as well as the role of special pharmacological agents in the progress of the disease and its morbidities. Finally, health-related quality of life is discussed in these patients with a direct comparison to the more severe β-thalassemia major.
Patients with non-transfusion-dependent thalassaemia (NTDT) have a genetic defect or combination of defects that affect haemoglobin synthesis, but which is not severe enough to require regular blood transfusions. The carrier frequency of NTDT is high (up to 80% in some parts of the world) but the prevalence of symptomatic patients varies with geography and is estimated to be from 1 in 100,000 to 1 in 100. NTDT has a variable presentation that may include mild to severe anaemia, enlarged spleen and/or liver, skeletal deformities, growth retardation, elevated serum ferritin and iron overload. The contributing factors to disease progression are ineffective erythropoiesis and increased haemolysis, which lead to chronic anaemia. The body’s attempts to correct the anaemia result in constantly activated erythropoiesis, leading to marrow expansion and extramedullary haematopoiesis. Diagnosis of NTDT is largely clinical but can be confirmed by genetic sequencing. NTDT must be differentiated from other anaemias including sideroblastic anaemia, paroxysmal nocturnal haemoglobinuria, congenital dyserythropoietic anaemia, myelodysplastic syndromes and iron-deficiency anaemia. Management of NTDT is based on managing symptoms, and includes blood transfusions, hydroxyurea treatment, iron chelation and sometimes splenectomy. Prognosis for well managed patients is good, with most patients living a normal life. Since NTDT is mainly prevalent in sub-tropical regions, patients who present in other parts of the world, in particular the Northern hemisphere, might not been correctly recognised and it can be considered a ‘rare’ condition. It is particularly important to identify and diagnose patients early, thereby preventing complications.
The term Nontransfusion dependent thalassaemia (NTDT) was suggested to describe patients who had clinical manifestations that are too severe to be termed minor yet too mild to be termed major. Those patients are not entirely dependent on transfusions for survival. If left untreated, three main factors are responsible for the clinical sequelae of NTDT: ineffective erythropoiesis, chronic hemolytic anemia, and iron overload. Reactive oxygen species (ROS) generation in NTDT patients is caused by 2 major mechanisms. The first one is chronic hypoxia resulting from chronic anemia and ineffective erythropoiesis leading to mitochondrial damage and the second is iron overload also due to chronic anemia and tissue hypoxia leading to increase intestinal iron absorption in thalassemic patients. Oxidative damage by reactive oxygen species (generated by free globin chains and labile plasma iron) is believed to be one of the main contributors to cell injury, tissue damage, and hypercoagulability in patients with thalassemia. Independently increased ROS has been linked to a myriad of pathological outcomes such as leg ulcers, decreased wound healing, pulmonary hypertension, silent brain infarcts, and increased thrombosis to count a few. Interestingly many of those complications overlap with those found in NTDT patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.