We have previously shown that cAMP protects against bile acid-induced apoptosis in cultured rat hepatocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. In the present studies, we investigated the mechanisms involved in this anti-apoptotic effect. Hepatocyte apoptosis induced by glycodeoxycholate (GCDC) was associated with mitochondrial depolarization, activation of caspases, the release of cytochrome c from the mitochondria, and translocation of BAX from the cytosol to the mitochondria. cAMP inhibited GCDC-induced apoptosis, caspase 3 and caspase 9 activation, and cytochrome c release in a PI3K-dependent manner. cAMP activated PI3K in p85 immunoprecipitates and resulted in PI3K-dependent activation of the survival kinase Akt. Chemical inhibition of Akt phosphorylation with SB-203580 partially blocked the protective effect of cAMP. cAMP resulted in wortmannin-independent phosphorylation of BAD and was associated with translocation of BAD from the mitochondria to the cytosol. These results suggest that GCDC-induced apoptosis in cultured rat hepatocytes proceeds through a caspase-dependent intracellular stress pathway and that the survival effect of cAMP is mediated in part by PI3K-dependent Akt activation at the level of the mitochondria.
Background/Aim-Adherence to an extracellular matrix (ECM) rescues hepatocytes from apoptosis, but how hepatocytes adhered to different ECM respond to apoptotic and cytoprotective stimuli is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.