Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8π-electron anti-aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hückel anti-aromaticity into Craig-type Möbius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal-carbon triple bond. Moreover, these metal-aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement.
The synthesis and X-ray characterization of two new dialkynylated diazatetracenes and the corresponding N, N-dihydrodiazatetracenes are reported. The dialkynylated heteroacenes are packed in a brick-wall motif that enforces significant overlap of their pi-faces. Cyclic voltammetry indicates that the dehydrogenated forms are easily reduced to their radical anions in solution. The planarity of these species validates the discussion of their aromaticity. Nucleus Independent Chemical Shift (NICS) computations demonstrate that both of these 20 pi and 24 pi electron systems are aromatic. Both experimental and computational results suggest that the aromaticity of the dihydroheteroacenes is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.