In this paper, we analyze statistical properties of a communication network constructed from the records of a mobile phone company. The network consists of 2.5 million customers that have placed 810 millions of communications (phone calls and text messages) over a period of 6 months and for whom we have geographical home localization information. It is shown that the degree distribution in this network has a power-law degree distribution k −5 and that the probability that two customers are connected by a link follows a gravity model, i.e. decreases like d −2 , where d is the distance between the customers. We also consider the geographical extension of communication triangles and we show that communication triangles are not only composed of geographically adjacent nodes but that they may extend over large distances. This last property is not captured by the existing models of geographical networks and in a last section we propose a new model that reproduces the observed property. Our model, which is based on the migration and on the local adaptation of agents, is then studied analytically and the resulting predictions are confirmed by computer simulations.
Detecting communities in large networks has drawn much attention over the years. While modularity remains one of the more popular methods of community detection, the so-called resolution limit remains a significant drawback. To overcome this issue, it was recently suggested that instead of comparing the network to a random null model, as is done in modularity, it should be compared to a constant factor. However, it is unclear what is meant exactly by "resolution-limit-free," that is, not suffering from the resolution limit. Furthermore, the question remains what other methods could be classified as resolution-limit-free. In this paper we suggest a rigorous definition and derive some basic properties of resolution-limit-free methods. More importantly, we are able to prove exactly which class of community detection methods are resolution-limit-free. Furthermore, we analyze which methods are not resolution-limit-free, suggesting there is only a limited scope for resolution-limit-free community detection methods. Finally, we provide such a natural formulation, and show it performs superbly.
We introduce a new family of strong linearizations of matrix polynomials-which we call "block Kronecker pencils"-and perform a backward stability analysis of complete polynomial eigenproblems. These problems are solved by applying any backward stable algorithm to a block Kronecker pencil, such as the staircase algorithm for singular pencils or the QZ algorithm for regular pencils. This stability analysis allows us to identify those block Kronecker pencils that yield a computed complete eigenstructure which is exactly that of a slightly perturbed matrix polynomial. The global backward error analysis in this work presents for the first time the following key properties: it is a rigurous analysis valid for finite perturbations (i.e., it is not a first order analysis), it provides precise bounds, it is valid simultaneously for a large class of linearizations, and it establishes a framework that may be generalized to other classes of linearizations. These features are related to the fact that block Kronecker pencils are a particular case of the new family of "strong block minimal bases pencils", which are robust under certain perturbations and, so, include certain perturbations of block Kronecker pencils. We hope that this robustness property will allow us to extend the results in this paper to other contexts.
We introduce a concept of similarity between vertices of directed graphs. Let G A and G B be two directed graphs with respectively n A and n B vertices. We define a n B × n A similarity matrix S whose real entry s ij expresses how similar vertex j (in G A ) is to vertex i (in G B ) : we say that s ij is their similarity score. The similarity matrix can be obtained as the limit of the normalized even iterates of S(k +1) = BS(k)A T +B T S(k)A where A and B are adjacency matrices of the graphs and S(0) is a matrix whose entries are all equal to one. In the special case where G A = G B = G, the matrix S is square and the score s ij is the similarity score between the vertices i and j of G. We point out that Kleinberg's "hub and authority" method to identify web-pages relevant to a given query can be viewed as a special case of our definition in the case where one of the graphs has two vertices and a unique directed edge between them. In analogy to Kleinberg, we show that our similarity scores are given by the components of a dominant eigenvector of a non-negative matrix. Potential applications of our similarity concept are numerous. We illustrate an application for the automatic extraction of synonyms in a monolingual dictionary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.