The Zika virus presents a major public health concern due to severe fetal neurological disorders associated with infections in pregnant women. In addition to vaccine development, the discovery of selective antiviral drugs is essential to combat future epidemic Zika virus outbreaks. The Zika virus NS2B-NS3 protease, which performs replication-critical cleavages of the viral polyprotein, is a promising drug target. We report the first macrocyclic peptide-based inhibitors of the NS2B-NS3 protease, discovered de novo through in vitro display screening of a genetically reprogrammed library including noncanonical residues. Six compounds were selected, resynthesized, and isolated, all of which displayed affinities in the low nanomolar concentration range. Five compounds showed significant protease inhibition. Two of these were validated as hits with submicromolar inhibition constants and selectivity toward Zika over the related proteases from dengue and West Nile viruses. The compounds were characterized as noncompetitive inhibitors, suggesting allosteric inhibition.
The reaction of nitrous oxide (N2O) with Nheterocyclic olefins (NHOs) results in cleavage of the N-O bond and formation of azo-bridged NHO dimers. The latter represent very electron-rich compounds with a low ionization energy. Cyclic voltammetry studies show that the dimers classify as a new organic super-electrondonors, with a reducing power similar to what is found for tetraazafulvalene derivatives. Mild oxidants are able to convert the neutral dimers into radical cations, which can be isolated. Further oxidation gives stable dications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.