Human CC chemokines macrophage inflammatory protein (MIP)-1␣, MIP-1, and RANTES (regulated on activation normal T cell expressed) self-associate to form high-molecular mass aggregates. To explore the biological significance of chemokine aggregation, nonaggregating variants were sought. The phenotypes of 105 hMIP-1␣ variants generated by systematic mutagenesis and expression in yeast were determined. hMIP-1␣ residues Asp 26 and Glu 66 were critical to the self-association process. Substitution at either residue resulted in the formation of essentially homogenous tetramers at 0.5 mg/ml. Substitution of identical or analogous residues in homologous positions in both hMIP-1 and RAN-TES demonstrated that they were also critical to aggregation. Our analysis suggests that a single charged residue at either position 26 or 66 is insufficient to support extensive aggregation and that two charged residues must be present. Solution of the three-dimensional NMR structure of hMIP-1␣ has enabled comparison of these residues in hMIP-1 and RANTES. Aggregated and disaggregated forms of hMIP-1␣, hMIP-1, and RANTES generally have equivalent G-protein-coupled receptormediated biological potencies. We have therefore generated novel reagents to evaluate the role of hMIP-1␣, hMIP-1, and RANTES aggregation in vitro and in vivo. The disaggregated chemokines retained their human immunodeficiency virus (HIV) inhibitory activities. Surprisingly, high concentrations of RANTES, but not disaggregated RANTES variants, enhanced infection of cells by both M-and T-tropic HIV isolates/strains. This observation has important implications for potential therapeutic uses of chemokines implying that disaggregated forms may be necessary for safe clinical investigation.
The folding of the all-beta sheet protein, interleukin-1 beta, was studied with nuclear magnetic resonance (NMR) spectroscopy, circular dichroism, and fluorescence. Ninety percent of the beta structure present in the native protein, as monitored by far-ultraviolet circular dichroism, was attained within 25 milliseconds, correlating with the first kinetic phase determined by tryptophan and 1-anilinonaphthalene-8-sulfonate fluorescence. In contrast, formation of stable native secondary structure, as measured by quenched-flow deuterium-hydrogen exchange experiments, began after only 1 second. Results from the NMR experiments indicated the formation of at least two intermediates with half-lives of 0.7 to 1.5 and 15 to 25 seconds. The final stabilization of the secondary structure, however, occurs on a time scale much greater than 25 seconds. These results differ from previous results on mixed alpha helix-beta sheet proteins in which both the alpha helices and beta sheets were stabilized very rapidly (less than 10 to 20 milliseconds).
Harding (2007) Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies, Biotechnology and Genetic Engineering Reviews, 24:1, 117-128,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.