Optically sampled analog-to-digital converters (ADCs) combine optical sampling with electronic quantization to enhance the performance of electronic ADCs. In this paper, we review the prior and current work in this field, and then describe our efforts to develop and extend the bandwidth of a linearized sampling technique referred to as phase-encoded optical sampling. The technique uses a dual-output electrooptic sampling transducer to achieve both high linearity and 60-dB suppression of laser amplitude noise. The bandwidth of the technique is extended by optically distributing the post-sampling pulses to an array of time-interleaved electronic quantizers. We report on the performance of a 505-MS/s (megasample per second) optically sampled ADC that includes high-extinction LiNbO 3 1-to-8 optical time-division demultiplexers. Initial characterization of the 505-MS/s system reveals a maximum signal-to-noise ratio of 51 dB (8.2 bits) and a spur-free dynamic range of 61 dB. The performance of the present system is limited by electronic quantizer noise, photodiode saturation, and preliminary calibration procedures. None of these fundamentally limit this sampling approach, which should enable multigigahertz converters with 12-b resolution. A signal-to-noise analysis of the phase-encoded sampling technique shows good agreement with measured data from the 505-MS/s system.
Scanning tunneling microscopy is used to study low temperature grown (LTG) InGaAs with and without Be doping. The Be-doped material is observed to contain significantly fewer AsGa antisite defects than the undoped material, with no evidence found for Be–As complexes. Annealing of the LTG-InGaAs forms precipitates preferentially in the undoped material. The previously observed dependence of the optical response time on Be doping and annealing is attributed to changes in the As antisite concentration and the compensation effect of the Be.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.