The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.
We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
The NPH1 (nonphototropic hypocotyl 1) gene encodes an essential component acting very early in the signal-transduction chain for phototropism. Arabidopsis NPH1 contains a serine-threonine kinase domain and LOV1 and LOV2 repeats that share similarity (36 to 56 percent) with Halobacterium salinarium Bat, Azotobacter vinelandii NIFL, Neurospora crassa White Collar-1, Escherichia coli Aer, and the Eag family of potassium-channel proteins from Drosophila and mammals. Sequence similarity with a known (NIFL) and a suspected (Aer) flavoprotein suggests that NPH1 LOV1 and LOV2 may be flavin-binding domains that regulate kinase activity in response to blue light-induced redox changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.