Opinion statement Solid organ transplantation is frequently complicated by a spectrum of seizure types, including single partial-onset or generalized tonic-clonic seizures, acute repetitive seizures or status epilepticus, and sometimes the evolution of symptomatic epilepsy. There is currently no specific evidence involving the transplant patient population to guide the selection, administration, or duration of antiepileptic drug (AED) therapy, so familiarity with clinical AED pharmacology and application of sound judgment are necessary for successful patient outcomes. An initial detailed search for symptomatic seizure etiologies, including metabolic, infectious, cerebrovascular, and calcineurin inhibitor treatment-related neuro-toxic complications such as posterior reversible encephalopathy syndrome (PRES), is imperative, as underlying central nervous system disorders may impose additional serious risks to cerebral or general health if not promptly detected and appropriately treated. The mainstay for post-transplant seizure management is AED therapy directed toward the suspected seizure type. Unfavorable drug interactions could place the transplanted organ at risk, so choosing an AED with limited interaction potential is also crucial. When the transplanted organ is dysfunctional or vulnerable to rejection, AEDs without substantial hepatic metabolism are favored in post-liver transplant patients, whereas after renal transplantation, AEDs with predominantly renal elimination may require dosage adjustment to prevent adverse effects. Levetiracetam, gabapentin, pregabalin, and lacosamide are drugs of choice for treatment of partial-onset seizures in post-transplant patients given their efficacy spectrum, generally excellent tolerability, and lack of drug interaction potential. Levetiracetam is the drug of choice for primary generalized seizures in post-transplant patients. When intravenous drugs are necessary for acute seizure management, benzodiazepines and fosphenytoin are the traditional and best evidence-based options, although intravenous levetiracetam, valproate, and lacosamide are emerging options. Availability of several newer AEDs has greatly expanded the therapeutic armamentarium for safe and efficacious treatment of post-transplant seizures, but future prospective clinical trials and pharmacokinetic studies within this specific patient population are needed.
Sleep disorders in myotonic dystrophy type 1 (DM1) are common and include sleep-disordered breathing, hypersomnia, and fatigue. Little is known regarding the occurrence of sleep disturbance in myotonic dystrophy type 2 (DM2). We hypothesized that DM2 patients may frequently harbor sleep disorders. We reviewed medical records of all genetically confirmed cases of DM2 seen at our sleep center between 1997 and 2010 for demographic, laboratory, overnight oximetry, and polysomnography (PSG) data. Eight patients (5 women, 3 men) with DM2 were identified. Excessive daytime sleepiness was seen in 6 patients (75%), insomnia in 5 (62.5%), and excessive fatigue in 4 (50%). Obstructive sleep apnea was diagnosed in 3 of 5 patients (60%) studied with PSG. Respiratory muscle weakness was present in all 6 patients (100%) who received pulmonary function testing. Four of 8 (50%) met criteria for diagnosis of restless legs syndrome. The clinical spectrum of DM2 may include a wide range of sleep disturbances. Although respiratory muscle weakness was frequent, sustained sleep-related hypoxia suggestive of hypoventilation was not seen in our patients. Further prospective studies are needed to examine the frequency and scope of sleep disturbances in DM2.
RLS, EDS, and fatigue are frequent sleep disturbances in patients with DM2, while OSA and pRBD symptoms are not. EDS was independently associated with DM2 diagnosis, suggesting possible primary CNS hypersomnia mechanisms. Further studies utilizing objective sleep measures are needed to better characterize sleep comorbidities in DM2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.