A prevalent form of multidrug resistance (MDR) in cancer cells is caused by an ATP-dependent drug efflux pump; this pump catalyzes the rapid exit of cytotoxic chemotherapy drugs from the cells. The Michaelis equation can be used to describe drug efflux through the MDR pump at a low drug substrate concentration [S]. The inhibition mechanism of an MDR reversal agent can be characterized when two different values of [S] are used to determine two values for the half-inhibition of efflux through the pump (I50). The reaction is noncompetitive when the two values of I50 are identical; the reaction is competitive when an increase in [S] produces a significant increase in the value of I50. The I50 has been determined for several different reversal agents with the substrate rhodamine 123. The inhibition potency observed is: cyclosporin A > DMDP > amiodarone > verapamil > quinidine > quinine > propranolol. Chemotherapy drugs that are potent inhibitors of the MDR pump could be used for the treatment of MDR neoplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.