Efficiency scores of production units are generally measured relative to an estimated production frontier. Nonparametric estimators (DEA, FDH, \cdots ) are based on a finite sample of observed production units. The bootstrap is one easy way to analyze the sensitivity of efficiency scores relative to the sampling variations of the estimated frontier. The main point in order to validate the bootstrap is to define a reasonable data-generating process in this complex framework and to propose a reasonable estimator of it. This paper provides a general methodology of bootstrapping in nonparametric frontier models. Some adapted methods are illustrated in analyzing the bootstrap sampling variations of input efficiency measures of electricity plants.Data Envelopment Analysis, Bootstrap, Resampling Methods, Frontier Efficiency Models
The Data Envelopment Analysis method has been extensively used in the literature to provide measures of firms' technical efficiency. These measures allow rankings of firms by their apparent performance. The underlying frontier model is non-parametric since no particular functional form is assumed for the frontier model. Since the observations result from some data-generating process, the statistical properties of the estimated efficiency measures are essential for their interpretations. In the general multi-output multi-input framework, the bootstrap seems to offer the only means of inferring these properties (i.e. to estimate the bias and variance, and to construct confidence intervals). This paper proposes a general methodology for bootstrapping in frontier models, extending the more restrictive method proposed in Simar & Wilson (1998) by allowing for heterogeneity in the structure of efficiency. A numerical illustration with real data is provided to illustrate the methodology.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract Non-parametric data envelopment analysis (DEA) estimators based on linear programming methods have been widely applied in analyses of productive efficiency. The distributions of these estimators remain unknown except in the simple case of one input and one output, and previous bootstrap methods proposed for inference have not been proven consistent, making inference doubtful. This paper derives the asymptotic distribution of DEA estimators under variable returns-to-scale. This result is then used to prove that two different bootstrap procedures (one based on sub-sampling, the other based on smoothing) provide consistent inference. The smooth bootstrap requires smoothing the irregularly-bounded density of inputs and outputs as well as smoothing of the DEA frontier estimate. Both bootstrap procedures allow for dependence of the inefficiency process on output levels and the mix of inputs in the case of input-oriented measures, or on inputs levels and the mix of outputs in the case of output-oriented measures.
Terms of use:
Documents in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.