The authors describe a method for accurate in vivo multislice imaging of the active component of the B1 field which is based on a previously proposed method, which uses the signal intensity ratio of two images measured with different excitation angles, and a repetition time TR 5 > or = 5 T1. The new method essentially reduces repetition and scan time by means of an additional compensating pulse. The suppression of T1 effects by this pulse are verified with simulations and measurements. Further investigations concerned the influence of slice selective excitation and magnetization transfer in multislice imaging to the B1 field determination. The stability and accuracy of the presented method is shown by several phantom and in vivo measurements. With the described method the active B1 field can be determined in vivo in 23 cross-sections in less than 6 min.
How site-specific transcription factors scan the genome to locate their target sites is a fundamental question in gene regulation. The in vivo binding interactions of several different transcription factors with chromatin have been investigated recently using quantitative fluorescence recovery after photobleaching (FRAP). These analyses have yielded significantly different estimates of both the binding rates and the number of predicted binding states of the respective transcription factors. We show here that these discrepancies are not due to fundamental differences among the site-specific transcription factors, but rather arise from errors in FRAP modeling. The two principal errors are a neglect of diffusion's role and an oversimplified approximation of the photobleach profile. Accounting for these errors by developing a revised FRAP protocol eliminates most of the previous discrepancies in the binding estimates for the three different transcription factors analyzed here. The new estimates predict that for each of the three transcription factors, approximately 75% of the molecules are freely diffusing within the nucleus, whereas the remainder is bound with an average residence time of approximately 2.5 s to a single type of chromatin binding site. Such consistent predictions for three different molecules suggest that many site-specific transcription factors may exhibit similar in vivo interactions with native chromatin.
The absolute concentration of albumin was measured in the interstitial fluid of subcutaneous adipose tissue and skeletal muscle in six healthy volunteers by combining the method of open-flow microperfusion and the no-net-flux calibration technique. By use of open-flow microperfusion, four macroscopically perforated double lumen catheters were inserted into the tissue regions of interest and constantly perfused. Across the macroscopic perforations of the catheters interstitial fluid was partially recovered in the perfusion fluid. Catheters were perfused with five solutions, each containing different concentrations of albumin. Absolute interstitial albumin concentrations were calculated by applying linear regression analysis to perfusate vs. sampled albumin concentration (no-net-flux calibration technique). Interstitial albumin concentrations were significantly lower (P < 0.0001) in adipose tissue (7.36 g/l; r = 0.99, P < 0.0003; range: 4.3-10.7 g/l) and in skeletal muscle (13.25 g/l; r = 0.99, P < 0.0012; range: 9.7 to 15.7 g/l) compared with the serum concentration (48.9 +/- 0.7 g/l, mean +/- SE, n = 6; range: 46.4-50.4 g/l). Furthermore, interstitial albumin concentrations were significantly higher in skeletal muscle compared with adipose tissue (P < 0.01). The study indicates that open-flow microperfusion allows stable sampling of macromolecules from the interstitial space of peripheral tissue compartments. Moreover, the present data report for the first time in healthy humans in vivo the true albumin concentrations of interstitial fluid of adipose tissue and skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.