[1] Global satellite observations of temperature and geopotential height (GPH) from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed. The precision, resolution, and accuracy of the data produced by the MLS version 2.2 processing algorithms are quantified, and recommendations for data screening are made. Temperature precision is 1 K or better from 316 hPa to 3.16 hPa, degrading to $3 K at 0.001 hPa. The vertical resolution is 3 km at 31.6 hPa, degrading to 6 km at 316 hPa and to $13 km at 0.001 hPa. Comparisons with analyses (Goddard Earth Observing System version 5.0.1 (GEOS-5), European Centre for Medium-range Weather Forecasts (ECMWF), Met Office (MetO)) and other observations (CHAllenging Minisatellite Payload (CHAMP), Atmospheric Infrared Sounder/Advanced Microwave Sounder Unit (AIRS/AMSU), Sounding of the Atmosphere using Broadband Radiometry (SABER), Halogen Occultation Experiment (HALOE), Atmospheric Chemistry Experiment (ACE), radiosondes) indicate that MLS temperature has persistent, pressure-dependent biases which are between À2.5 K and +1 K between 316 hPa and 10 hPa. The 100-hPa MLS v2.2 GPH surface has a bias of $150 m relative to the GEOS-5 values. These biases are compared to modeled systematic uncertainties. GPH biases relative to correlative measurements generally increase with height owing to an overall cold bias in MLS temperature relative to correlative temperature measurements in the upper stratosphere and mesosphere.
[1] The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided essentially daily global measurements of ozone (O 3 ) profiles from the upper troposphere to the upper mesosphere since August of 2004. This paper focuses on validation of the MLS stratospheric standard ozone product and its uncertainties, as obtained from the 240 GHz radiometer measurements, with a few results concerning mesospheric ozone. We compare average differences and scatter from matched MLS version 2.2 profiles and coincident ozone profiles from other satellite instruments, as well as from aircraft lidar measurements taken during Aura Validation Experiment (AVE) campaigns. Ozone comparisons are also made between MLS and balloon-borne remote and in situ sensors. We provide a detailed characterization of random and systematic uncertainties for MLS ozone. We typically find better agreement in the comparisons using MLS version 2.2 ozone than the version 1.5 data. The agreement and the MLS uncertainty estimates in the stratosphere are often of the order of 5%, with values closer to 10% (and occasionally 20%) at the lowest stratospheric altitudes, where small positive MLS biases can be found. There is very good agreement in the latitudinal distributions obtained from MLS and from coincident profiles from other satellite instruments, as well as from aircraft lidar data along the MLS track.
[1] The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H 2 O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is $0.2-0.3 ppmv (4-9%), and the vertical resolution is $3-4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1-0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6-34%), and the vertical resolution degrades to $12-16 km. The accuracy is estimated to be 0.2-0.5 ppmv (4-11%) for the pressure range 68-0.01 hPa. The scientifically useful range of the H 2 O data is from 316 to 0.002 hPa, although only the 82-0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N 2 O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is $13-25 ppbv (7-38%), the vertical resolution is $4-6 km and the accuracy is estimated to be 3-70 ppbv (9-25%) for the pressure range 100-4.6 hPa. The scientifically useful range of the N 2 O data is from 100 to 1 hPa. Citation: Lambert, A., et al. (2007), Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements,
[1] The validation of version 2.2 (v2.2) H 2 O measurements from the Earth Observing System (EOS) Microwave Limb Sounder (Aura MLS) on the Aura satellite are presented.Results from comparisons made with Aqua Atmospheric Infrared Sounder (AIRS), Vaisala radiosondes, frost point hygrometer, and WB57 aircraft hygrometers are presented. Comparisons with the Aura MLS v1.5 H 2 O, Goddard global modeling and assimilation office Earth Observing System analyses (GEOS-5) are also discussed. For H 2 O mixing ratios less than 500 ppmv, the MLS v2.2 has an accuracy better than 25% between 316 and 147 hPa. The precision is 65% at 316 hPa that reduces to 25% at 147 hPa. This performance is better than expected from MLS measurement systematic error analyses. MLS overestimates H 2 O for mixing ratios greater than 500 ppmv which is consistent with a scaling error in either the calibrated or calculated MLS radiances. The validation of the accuracy of MLS v2.2 H 2 O from 121 to 83 hPa which is expected to be better than 15% cannot be confirmed at this time because of large disagreements among the hygrometers used in the AVE campaigns. The precision of the v2.2 H 2 O from 121 to 83 hPa is 10-20%. The vertical resolution is 1.5-3.5 km depending on height. The horizontal resolution is 210 Â 7 km 2 along and perpendicular to the Aura orbit track, respectively. Relative humidity is calculated from H 2 O and temperature. The precision, accuracy, and spatial resolution are worse than for H 2 O.Citation: Read, W. G., et al. (2007), Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H 2 O and relative humidity with respect to ice validation,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.