How can transforming monocultures to diverse polycultures address and solve the intersecting issues of our food system? This literature review offers community resources, practical examples, and academic research to support the shift away from monocultures, and the broader social contexts that encourage them, and towards food systems as part of cultures that prioritize people, water, and the land. Forest garden systems are presented as a temperate agroforestry-based food system design which make use of multiple perennial plants to meet human needs for food, medicine, fuel, and more while regenerating the environment in which they grow. There is a lack of peer-reviewed research in temperate forest garden systems, but it is gaining momentum alongside an increasing application in non-academic contexts. Combined with cultural principles that prioritize people, the land, and water over profits, forest garden systems are proposed as a pathway for meeting local community's needs and environmental regeneration.
This research investigated soil microbial abundances affected by different ground management systems in establishing apple (Malus domestica cv. Idared, M9) orchards in Ontario, Canada. Four treatments, including forest garden systems with and without compost (FGSC and FGS), and grass understory systems with and without compost (GC and G), were assessed over two establishment years for gene copy abundance of soil arbuscular mycorrhizal (AM) fungi, total fungi and total bacteria using quantitative real-time polymerase chain reactions. Time had a greater effect on all three soil microbial abundances, with total bacterial and AM fungi decreasing and total fungal abundance increasing from spring 2013 to fall 2014. The changes were greatest between the sampling dates of fall 2013 and spring 2014, which is 1 yr after the establishment of the experimental apple plots. There were no significant differences in soil microbial abundances between treatments at any specific sampling date. Apple tree trunk circumference was greatest for FGSC and FGS after 2 yr, but no significant differences in GC and G treatments. In the last sampling period, fall 2014, FGSC plots had significantly greater trunk circumferences compared with G plots. Soil chemical properties neither changed over the 2 yr, nor did they differ between treatments at any one sampling time. We conclude that the applebased FGS treatments can benefit apple tree growth and there is a basis for future research to explore specific plantplant, plant-microbe and microbe-microbe relations in FGSs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.