Digitalization is a transformation process which has already affected many parts of industry and society and is expected to yet increase its transformative speed and impact. In the energy sector, many digital applications have already been implemented. However, a more drastic change is expected during the next decades. Good understanding of which digital applications are possible and what are the associated benefits as well as risks from the different perspectives of the impacted stakeholders is of high importance. On the one hand, it is the basis for a broad societal and political discussion about general targets and guidelines of digitalization. On the other hand, it is an important piece of information for companies in order to develop and sustainably implement digital applications. This article provides a structured overview of potential digital applications in the German energy (electricity) sector, including the associated benefits and the impacted stakeholders on the basis of a literature review. Furthermore, as an outlook, a methodology to holistically analyze digital applications is suggested. The intended purpose of the suggested methodology is to provide a complexity-reduced fact base as input for societal and political discussions and for the development of new digital products, services, or business models. While the methodology is outlined in this article, in a follow-up article the application of the methodology will be presented and the use of the approach reflected.Good knowledge of the expected digital applications and how benefits and potential downsides affect different stakeholders is an essential basis for a broad societal and political discussion to set targets and guidance for digital transformation. Furthermore, this knowledge is relevant for the development of new business models. Therefore, the benefits, as well as potential risks and bottlenecks from the perspective of different stakeholders, need to be analyzed early on to develop solution options for pitfalls and ensure that the full benefits can be utilized.As a first step, transparency on which digital applications can be expected in the electricity sector and why they will/might be implemented needs to be created. Therefore, this article presents the results of a literature review of ten publications with the following three objectives:
The development of digital technologies is accelerating, enabling increasingly profound changes in increasingly short time periods. The changes affect almost all areas of the economy as well as society. The energy sector has already seen some effects of digitalization, but more drastic changes are expected in the next decades. Besides the very positive impacts on costs, system stability, and environmental effects, potential obstacles and risks need to be addressed to ensure that advantages can be exploited while adverse effects are avoided. A good understanding of available and future digital applications from different stakeholders’ perspectives is necessary. This study proposes a framework for the holistic evaluation of digital applications in the energy sector. The framework consists of a combination of well-established methods, namely the multi-criteria analysis (MCA), the life cycle assessment (LCA), and expert interviews. The objective is to create transparency on benefits, obstacles, and risks as a basis for societal and political discussions and to supply the necessary information for the sustainable development and implementation of digital applications. The novelty of the proposed framework is the specific combination of the three methods and its setup to enable sound applicability to the wide variety of digital applications in the energy sector. The framework is tested subsequently on the example of the German smart meter roll-out. The results reveal that, on the one hand, the smart meter roll-out clearly offers the potential to increase the system stability and decrease the carbon emission intensity of the energy system. Therefore, the overall evaluation from an environmental perspective is positive. However, on the other hand, close attention needs to be paid to the required implementation and operational effort, the IT (information technology) and data security, the added value for the user, the social acceptance, and the realization of energy savings. Therefore, the energy utility perspective in particular results in an overall negative evaluation. Several areas with a need for action are identified. Overall, the proposed framework proves to be suitable for the holistic evaluation of this digital application.
Transponder-based Aircraft Detection Lighting Systems (ADLS) are increasingly used in wind turbines to limit beacon operation times, reduce light emissions, and increase wind energy acceptance. The systems use digital technologies such as receivers of digital transponder signals, LTE/5G, and other information and communication technology. The use of ADLS will be mandatory in Germany both for new and existing wind turbines with a height of >100 m from 2023 (onshore) and 2024 (offshore), so a nationwide rollout is expected to start during 2022. To fully realize the benefits while avoiding risks and bottlenecks, a thorough and holistic understanding of the efforts required and the impacts caused along the life cycle of an ADLS is essential. Therefore, this study presents the first multiaspect holistic evaluation of an ADLS. A framework for evaluating digital applications in the energy sector, previously developed by the authors, is refined and applied. The framework is based on multi-criteria analysis (MCA), life cycle assessment (LCA), and expert interviews. On an aggregated level, the MCA results show an overall positive impact from all stakeholders' perspectives. Most positive impacts are found in the society and politics category, while most negative impacts are of technical nature. The LCA of the ADLS reveals a slightly negative impact, but this impact is negligible when compared to the total life cycle impact of the wind turbines of which the ADLS is a part. Besides the aggregated evaluation, detailed information on potential implementation risks, bottlenecks, and levers for life cycle improvement are presented. In particular, the worldwide scarcity of the required semiconductors, in combination with the general lack of technicians in Germany, lead to the authors' recommendation for a limited prolongation of the planned rollout period. This period should be used by decision-makers to ensure the availability of technical components and installation capacities. A pooling of ADLS installations in larger regions could improve plannability for manufacturers and installers. Furthermore, an ADLS implementation in other countries could be supported by an early holistic evaluation using the presented framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.