This paper presents the development and evaluation of concurrent control of a robotic system for less-invasive treatment of osteolytic lesions behind an acetabular implant. This system implements safety constraints including a remote center of motion (RCM), virtual walls, and joint limits while operating through the screw holes of the acetabular implant. The formulated linear constrained optimization problem ensures these constraints are satisfied while maintaining precise control of the tip of a Continuum Dexterous Manipulator (CDM) attached to a positioning robot. Experiments evaluated the performance of the tip control method within an acetabular cup. The controller reliably reached a series of goal points with a mean error of 0.42 mm and a worst-case error of straying 1.0 mm from our path.
Mastoidectomy is a common surgical procedure within otology. Despite being inherently well suited for implementation of robotic assistance, there are no commercially available robotic systems that have demonstrated utility in aiding with this procedure. This article describes a robotic technique for image-guided mastoidectomy with an experimental cooperatively controlled robotic system developed for use within otolaryngology–head and neck surgery. It has the ability to facilitate enhanced operative precision with dampening of tremor in simulated surgical tasks. Its kinematic design is such that the location of the attached surgical instrument is known with a high degree of fidelity at all times. This facilitates image registration and subsequent definition of virtual fixtures, which demarcate surgical workspace boundaries and prevent motion into undesired areas. In this preliminary feasibility study, we demonstrate the clinical utility of this system to facilitate performance of a cortical mastoidectomy by a novice surgeon in 5 identical temporal bone models with a mean time of 221 ± 35 seconds.
Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.
Objectives
To describe a 3D-printed middle ear model that quantifies the force applied to the modeled incus. To compare the forces applied during placement and crimping of a stapes prosthesis between the Robotic ENT Microsurgery System (REMS) and the freehand technique in this model.
Study Design
Prospective feasibility study.
Setting
Robotics laboratory.
Subjects and Methods
A middle ear model was designed and 3D printed to facilitate placement and crimping of a piston prosthesis. The modeled incus was mounted to a 6–degree of freedom force sensor to measure forces/torques applied on the incus. Six participants—1 fellowship-trained neurotologist, 2 neurotology fellows, and 3 otolaryngology–head and neck surgery residents—placed and crimped a piston prosthesis in this model, 3 times freehand and 3 times REMS assisted. Maximum force applied to the incus was then calculated for prosthesis placement and crimping from force/torque sensor readings for each trial. Robotic and freehand outcomes were compared with a linear regression model.
Results
Mean maximum magnitude of force during prosthesis placement was 126.4 ± 73.6 mN and 105.0 ± 69.4 mN for the freehand and robotic techniques, respectively (P = .404). For prosthesis crimping, the mean maximum magnitude of force was 469.3 ± 225.2 mN for the freehand technique and 272.7 ± 97.4 mN for the robotic technique (P = .049).
Conclusions
Preliminary data demonstrate that REMS-assisted stapes prosthesis placement and crimping are feasible with a significant reduction in maximum force applied to the incus during crimping with the REMS in comparison with freehand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.