This work reports the mechanical, durability and insulating properties of novel geopolymer composites made of iron-rich laterite and sugarcane bagasse fibers with sodium silicate as a hardener. The results showed that the addition of fibers was beneficial for improving the fracture behavior of iron-rich laterite based geopolymer from brittle to ductile. The 28 days compressive strength ranges from 50 MPa to 14 MPa with the content of fibers. The modulus of elasticity was improved by 50% with only 3 wt% of fibers. The geopolymer composites perform well after 20 wet-dry cycles with the improvement of its ductility. The 28 days thermal conductivity decreases from 0.77 W/mK to 0.55 W/mK with the fibers content.
This work focuses on the assessment of oil palm mesocarp fibers as reinforcement in a composite material with an unsaturated polyester matrix. Several volume ratios of OPMF reinforcement (0 to 15%) were used, the fibers being distributed randomly. The resulting composite was characterized on the physical and mechanical aspects. Physically, the true and apparent densities were determined as well as the porosity rate. It appears that the addition of fibers further lightens the composite and increases the porosity. The water absorption rate of the different composites samples was evaluated. The more fibers the composite contains, the higher its water absorption rate. On the mechanical aspect, the bending modulus of elasticity, bending stress at break, and breaking strain were evaluated through a three-point bending test on all combinations. The same parameters were also evaluated for certain combinations by a unidirectional tensile test. It appears from this mechanical characterization that the volume fraction of 5% reinforcement has the highest specific modulus. Impact tests were performed on samples of this combination using several sizes of reinforcing fibers. Impact resistance is enhanced as the size of the inclusion increases. The Halpin-Tsai micromechanical model for randomly distributed short fiber composites was used for the inverse approach determination of the theoretical moduli of the matrix and OPMF, then in a direct approach to determine the elastic modulus of the composite at 7.5% reinforcement.
This study focuses on the production and characterization of biodegradable handmade paper from the Sida rhombifolia plant (SRP) cellulose. Sida rhombifolia plant is a seasonal plant that grows in the equatorial and tropical climates. The studies carried out on this SRP were aimed at investigating the methods required for the production of handmade paper from SRP plant and also at determining the tensile strength. Four specimens of SRP paper of different additive labels S0 (no additive), S1 (starch and KOH), S2 (starch), and S3 (Foska liquid glue) were produced using the Kraft method. Tensile properties (stress at break, elongation at break, and Young’s modulus), the rate of water absorption, and the rate of moisture absorption were carried out. Results showed that the addition of potassium hydroxide considerably reduces Young’s modulus of SRP handmade paper (S1) while the Foska liquid glue (S3) significantly improves it. In addition, the addition of potassium hydroxide and Foska liquid substantially improves the water absorption properties of the paper S2 and S3, respectively. The adhesive liquid creates more porosity and consequently increases the absorption of water. The addition of potassium hydroxide and Foska liquid significantly embedded the rate of moisture absorption. From the results obtained, it can be concluded that the paper S3 can be used as packaging paper since it has better mechanical properties and moisture absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.