The objective of this study was to investigate the effect of insulin and IGF-I on protein synthesis and translation initiation in C2C12 myotubes in nutrient-deprived Dulbecco's phosphate buffered saline (DPBS). The results showed that insulin and IGF-I increased protein synthesis by 62% and 35% respectively in DPBS, and the effect was not affected by rapamycin, but was blocked by LY294002. Insulin and IGF-I stimulated eukaryotic initiation factor 4E (eIF4E) binding protein (4EBP1) phosphorylation in a dose-dependent manner, and the stimulation was independent of availability of external amino acids. Both LY294002 and rapamycin blocked the insulin and IGF-Iinduced increases in 4EBP1 phosphorylation. The results also showed that insulin and IGF-I were able to stimulate PKB/Akt phosphorylation, glycogen synthase kinase (GSK) 3 phosphorylation and mTOR phosphorylation in DPBS. Insulin and IGF-I increased the amount of eIF4G associated with eIF4E in nutrient-deprived C2C12 myotubes. The amount of 4EBP1 associated with eIF4E was decreased after insulin or IGF-I stimulation. We conclude that in C2C12 myotubes, insulin and IGF-I may regulate protein synthesis and translation initiation independent of external amino acid supply via the phosphatidylinositol-3 kinase-PKB/Akt-mTOR pathway.
We determined the effect of insulin and/or recombinant human (rh)IGF-I infusion on ovine fetal phenylalanine kinetics, protein synthesis, and phenylalanine accretion. The chronically catheterized fetal lamb model was used at 130 days gestation. All studies were performed while fetal glucose and amino acid concentrations were held constant. Experimental infusates were 1) saline, 2) rhIGF-I plus a replacement dose of insulin (40 nmol), 3) insulin (890 mIU/h), and 4) IGF-I plus insulin (40 nmol IGF-I/h and 890 mIU insulin/h). Both hormones increased glucose and amino acid utilization, with insulin having a greater effect. The major effect on phenylalanine kinetics was a pronounced fall in phenylalanine hydroxylation, again with insulin having the greatest effect. Whole body protein breakdown was not significantly altered by either hormone; whole body protein synthesis was significantly increased during the combined infusion. Protein accretion was increased by both hormones, with the greatest increase during combined infusion. The fractional synthetic rate (FSR) of circulating albumin was increased by IGF-I but not by insulin. Both hormones significantly increased skeletal muscle FSR without a synergistic effect. The anabolic effects of insulin and IGF-I were more pronounced in these studies than in previous studies where amino acid concentrations were not maintained. The present data also suggest that insulin and IGF-I promote fetal growth through distinct, organ-specific mechanisms.
In this study, we demonstrated that Fn can mediate attachment of M. tuberculosis to murine AMs. The data suggest that Fn interacts with M. tuberculosis via the heparin binding domain (HBD) of Fn. Fn-enhanced attachment of M. tuberculosis to murine AMs was decreased by the addition of monoclonal antibodies (MAbs) to either HBD or cell binding domain. Further, Fn-mediated attachment of M. tuberculosis to AMs was blocked by the tetrapeptide sequence of the CBD, RGDS (Arg-Gly-Glu-Ser), suggesting a possible role for the CBD of Fn in the mediation of Fn attachment to AMs. MATERIALS AND METHODSM. tuberculosis isolation. The H37Ra strain of M. tuberculosis (American Type Culture Collection, Manassas, Va.) was cultured at 37Β°C in 5% CO 2 atmosphere in dispersed form in Middlebrook 7H9 broth (Difco Laboratories, Detroit,
Pneumocystis carinii is an extracellular pathogen which requires attachment to alveolar epithelial cells for growth and replication. Previous studies have demonstrated that the extracellular matrix protein fibronectin (Fn) facilitates attachment of P. carinii to lung cells. This study addresses the role of cell surface Fn receptors (integrins) as mediators of P. carinii attachment and demonstrates the effect of P. carinii attachment on integrin expression on cultured lung cells. To determine the role of Fn-binding integrins in P. carinii attachment, attachment of 51Cr-labelled P. carinii organisms to the lung epithelial cell line A549 was quantified in the presence or absence of anti-integrin antibodies. Antibodies to the alpha v and alpha 5 integrin subunits significantly inhibited P. carinii attachment, while addition of antibody to the alpha subunit of a non-Fn-binding integrin, alpha 2, did not affect P. carinii attachment. To further investigate the role of Fn-binding integrins in P. carinii attachment, the effect of P. carinii attachment on expression of the alpha v and alpha 5 integrin subunits was determined. A549 cells incubated with either P. carinii organisms or with the P. carinii major surface glycoprotein gp120 demonstrated a 3- to 10-fold increase in expression of the alpha 5 integrin subunit; however, neither P. carinii nor gp120 affected the expression of alpha v integrin. Furthermore, the effects of P. carinii on A549 cell alpha 5 integrin expression were attenuated by the addition of an anti-gp120 antibody which blocks P. carinii attachment to A549 cells. Therefore, P. carinii attachment to lung epithelial cells appears to be mediated by alpha v- and alpha 5-containing integrins expressed on the epithelial cell surface, and P. carinii attachment results in increased expression of the alpha 5 integrin subunit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Β© 2025 scite LLC. All rights reserved.
Made with π for researchers
Part of the Research Solutions Family.