The microtubule-associated protein tau (encoded by MAPT) and several tau kinases have been implicated in neurodegeneration, but only MAPT has a proven role in disease. We identified mutations in the gene encoding tau tubulin kinase 2 (TTBK2) as the cause of spinocerebellar ataxia type 11. Affected brain tissue showed substantial cerebellar degeneration and tau deposition. These data suggest that TTBK2 is important in the tau cascade and in spinocerebellar degeneration.
Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the ‘diagnostic odyssey’ for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1–3, 6, 7 and Friedrich’s ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3–35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US$620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.
The SCA7 mutation has been found in 54 patients and 7 at-risk subjects from 17 families who have autosomal dominant cerebellar ataxia (ADCA) II with progressive pigmentary maculopathy. In one isolated case, haplotype reconstruction through three generations confirmed a de novo mutation owing to paternal meiotic instability. Different disease-associated haplotypes segregated among the SCA7-positive kindreds, which indicated a multiple origin of the mutation. One family with the clinical phenotype of ADCA type II did not have the CAG expansion that indicated locus heterogeneity. The distribution of the repeat size in 944 independent normal chromosomes from controls, unaffected at-risk subjects, and one affected individual fell into two ranges. The majority of the alleles were in the first range of 7-19 CAG repeats. A second range could be identified with 28-35 repeats, and we provide evidence that these repeats represent intermediate alleles that are prone to further expansion. The repeat size of the pathological allele, the widest reported for all CAG-repeat disorders, ranged from 37 to approximately 220. The repeat size showed significant negative correlation with both age at onset and age at death. Analysis of the clinical features in the patients with SCA7 confirmed that the most frequently associated features are pigmentary maculopathy, pyramidal tract involvement, and slow saccades. The subjects with <49 repeats tended to have a less complicated neurological phenotype and a longer disease duration, whereas the converse applied to subjects with >/=49 repeats. The degree of instability during meiotic transmission was greater than in all other CAG-repeat disorders and was particularly striking in paternal transmission, in which a median increase in repeat size of 6 and an interquartile range of 12 were observed, versus a median increase of 3 and interquartile range of 3.5 in maternal transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.