This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress.
Purpose This study investigated the relationship between the ground reaction force-time profile of a countermovement jump (CMJ) and fatigue, specifically focusing on predicting the onset of neuromuscular versus metabolic fatigue using the CMJ. Method Ten recreational athletes performed 5 CMJs at time points prior to, immediately following, and at 0.5, 1, 3, 6, 24 and 48 h after training, which comprised repeated sprint sessions of low, moderate, or high workloads. Features of the concentric portion of the CMJ force-time signature at the measurement time points were analysed using Principal Components Analysis (PCA) and functional PCA ( f PCA) to better understand fatigue onset given training workload. In addition, Linear Mixed Effects (LME) models were developed to predict the onset of fatigue. Results The first two Principal Components (PCs) using PCA explained 68% of the variation in CMJ features, capturing variation between athletes through weighted combinations of force, concentric time and power. The next two PCs explained 9.9% of the variation and revealed fatigue effects between 6 to 48 h after training for PC3, and contrasting neuromuscular and metabolic fatigue effects in PC4. f PCA supported these findings and further revealed contrasts between metabolic and neuromuscular fatigue effects in the first and second half of the force-time curve in PC3, and a double peak effect in PC4. Subsequently, CMJ measurements up to 0.5 h after training were used to predict relative peak CMJ force, with mean squared errors of 0.013 and 0.015 at 6 and 48 h corresponding to metabolic and neuromuscular fatigue. Conclusion The CMJ was found to provide a strong predictor of neuromuscular and metabolic fatigue, after accounting for force, concentric time and power. This method can be used to assist coaches to individualise future training based on CMJ response to the immediate session.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.