In biomineralized tissues such as bone, the recurring structural motif at the supramolecular level is an anisotropic stiff inorganic component reinforcing the soft organic matrix. The high toughness and defect tolerance of natural biomineralized composites is believed to arise from these nanometer scale structural motifs. Specifically, load transfer in bone has been proposed to occur by a transfer of tensile strains between the stiff inorganic (mineral apatite) particles via shearing in the intervening soft organic (collagen) layers. This raises the question as to how and to what extent do the mineral particles and fibrils deform concurrently in response to tissue deformation. Here we show that both mineral nanoparticles and the enclosing mineralized fibril deform initially elastically, but to different degrees. Using in situ tensile testing with combined high brilliance synchrotron X-ray diffraction and scattering on the same sample, we show that tissue, fibrils, and mineral particles take up successively lower levels of strain, in a ratio of 12:5:2. The maximum strain seen in mineral nanoparticles (Ϸ0.15-0.20%) can reach up to twice the fracture strain calculated for bulk apatite. The results are consistent with a staggered model of load transfer in bone matrix, exemplifying the hierarchical nature of bone deformation. We believe this process results in a mechanism of fibril-matrix decoupling for protecting the brittle mineral phase in bone, while effectively redistributing the strain energy within the bone tissue.biomineralization ͉ deformation mechanisms ͉ in situ tensile testing ͉ micromechanics of bone ͉ synchrotron radiation
Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.
The endoskeleton of elasmobranchs (sharks and rays) is comprised largely of unmineralized cartilage, differing fundamentally from the bony skeletons of other vertebrates. Elasmobranch skeletons are further distinguished by a tessellated surface mineralization, a layer of minute, polygonal, mineralized tiles called tesserae. This 'tessellation' has defined the elasmobranch group for more than 400 million years, yet the limited data on development and ultrastructure of elasmobranch skeletons (e.g. how tesserae change in shape and mineral density with age) have restricted our abilities to develop hypotheses for tessellated cartilage growth. Using high-resolution, two-dimensional and three-dimensional materials and structural characterization techniques, we investigate an ontogenetic series of tessellated cartilage from round stingray Urobatis halleri, allowing us to define a series of distinct phases for skeletal mineralization and previously unrecognized features of tesseral anatomy. We show that the distinct tiled morphology of elasmobranch calcified cartilage is established early in U. halleri development, with tesserae forming first in histotroph embryos as isolated, globular islets of mineralized tissue. By the sub-adult stage, tesserae have increased in size and grown into contact with one another. The intertesseral contact results in the formation of more geometric (straight-edged) tesseral shapes and the development of two important features of tesseral anatomy, which we describe here for the first time. The first, the intertesseral joint, where neighboring tesserae abut without appreciable overlapping or interlocking, is far more complex than previously realized, comprised of a convoluted bearing surface surrounded by areas of fibrous attachment. The second, tesseral spokes, are lamellated, high-mineral density features radiating outward, like spokes on a wheel, from the center of each tessera to its joints with its neighbors, likely acting as structural reinforcements of the articulations between tesserae. As tesserae increase in size during ontogeny, spokes are lengthened via the addition of new lamellae, resulting in a visually striking mineralization pattern in the larger tesserae of older adult skeletons when viewed with scanning electron microscopy (SEM) in backscatter mode. Backscatter SEM also revealed that the cell lacunae in the center of larger tesserae are often filled with high mineral density material, suggesting that when intratesseral cells die, cell-regulated inhibition of mineralization is interrupted. Many of the defining ultrastructural details we describe relate to local variation in tissue mineral density and support previously proposed accretive growth mechanisms for tesserae. High-resolution micro-computed tomography data indicate that some tesseral anatomical features we describe for U. halleri are common among species of all major elasmobranch groups despite large variation in tesseral shape and size. We discuss hypotheses about how these features develop, and compare them with oth...
Magnesium is a key component used by many organisms in biomineralization. One role for magnesium is in stabilizing an otherwise unstable amorphous calcium carbonate (ACC) phase. The way in which this stabilization is achieved is unknown. Here, we address this question by studying the chemical environment around magnesium in biogenic and synthetic ACCs using Mg K-edge X-ray absorption spectroscopy (XAS). We show that although the short-range structure around the Mg ion is different in the various minerals studied, they all involve a shortening of the Mg−O bond length compared to crystalline anhydrous MgCO3 minerals. We propose that the compact structure around magnesium introduces distortion in the CaCO3 host mineral, thus inhibiting its crystallization. This study also shows that despite technical challenges in the soft X-ray energy regime, Mg K-edge XAS is a valuable tool for structural analysis of Mg containing amorphous materials, in biology and materials science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.