We address the question of the dependence of the bulk free energy on boundary conditions for the six vertex model. Here we compare the bulk free energy for periodic and domain wall boundary conditions. Using a determinant representation for the partition function with domain wall boundary conditions, we derive Toda differential equations and solve them asymptotically in order to extract the bulk free energy. We find that it is different and bears no simple relation with the free energy for periodic boundary conditions. The six vertex model with domain wall boundary conditions is closely related to algebraic combinatorics (alternating sign matrices). This implies new results for the weighted counting for large size alternating sign matrices. Finally we comment on the interpretation of our results, in particular in connection with domino tilings (dimers on a square lattice).
04/2000
The partition function of the six-vertex model on a square lattice with domain wall boundary conditions (DWBC) is rewritten as a hermitean one-matrix model or a discretized version of it (similar to sums over Young diagrams), depending on the phase. The expression is exact for finite lattice size, which is equal to the size of the corresponding matrix. In the thermodynamic limit, the matrix integral is computed using traditional matrix model techniques, thus providing a complete treatment of the bulk free energy of the six-vertex model with DWBC in the different phases. In particular, in the anti-ferroelectric phase, the bulk free energy and a subdominant correction are given exactly in terms of elliptic theta functions.
We prove that the sum of entries of the suitably normalized groundstate vector of the $O(1)$ loop model with periodic boundary conditions on a periodic strip of size $2n$ is equal to the total number of $n\times n$ alternating sign matrices. This is done by identifying the state sum of a multi-parameter inhomogeneous version of the $O(1)$ model with the partition function of the inhomogeneous six-vertex model on a $n\times n$ square grid with domain wall boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.