Background The human botfly, Dermatobia hominis, is a common cause of furuncular myiasis in dogs in Latin America. Lesions can be single or multiple, each harboring an individual larva, presented as an erythematous nodule that causes pruritus and pain. Typical treatment consists of sedation for removal of larvae by surgical incision or manual pressure. Medications to kill the larva before its extraction can reduce inflammation and discomfort and provide a less traumatic larval removal. Isoxazolines are broad-spectrum ectoparasiticides with larvicidal activity previously reported in the treatment of screwworm myiasis in companion animals. The aim of this study was to evaluate the effectiveness of sarolaner as part of the clinical management of furuncular myiasis in dogs caused by D. hominis larvae. Methods Ten short-haired mixed breed dogs naturally infested with D. hominis were enrolled. Clinical diagnosis was achieved by observation of skin nodules and visualization of larval motility through the lesion orifice. Sarolaner was administered at manufacturer recommended dose for fleas and ticks. Lesions were reexamined 24 h post-treatment and assessed for viability of larvae. Larvae were removed by digital compression and identified as D. hominis. Results Seventy-five D. hominis larvae were retrieved from ten dogs. No live larvae were observed, demonstrating 100% larvicidal efficacy of sarolaner. Skin lesions were healed 30 days post-treatment and new lesions were not observed. Conclusions Sarolaner seems to be effective as larvicidal treatment for dogs with furuncular myiasis, reducing discomfort caused by the presence of the larva in the skin and facilitating its safe removal. Graphical abstract
Background – The human botfly, Dermatobia hominis is a common cause of furuncular myiasis in dogs in Latin America. Lesions can be single or multiple, each harboring an individual larva, presented as an erythematous nodule that causes pruritus and pain. Typical treatment consists of sedation for removal of larvae by surgical incision or manual pressure. Medications to kill the larva before its extraction can reduce inflammation and discomfort, and provide a less traumatic larval removal. Isoxazolines are broad-spectrum ectoparasiticides with larvicidal activity previously reported in the treatment of screwworm myiasis in companion animals. The aim of this study was evaluate the effectiveness of sarolaner as part of the clinical management of furuncular myiasis in dogs caused by D. hominis larvae. Methods and materials – Ten short-haired mixed breed dogs naturally infested. Clinical diagnosis was achieved by observation of skin nodules and visualization of larval motility through the lesion orifice. Sarolaner was administered at manufacturer recommended dose for fleas and ticks. Lesions were reexamined 24 hours post-treatment and assessed for viability of larvae. Larvae were removed by digital compression and identified as D. hominis.Results – Seventy-five D. hominis larvae were retrieved from 10 dogs. No live larvae were observed, demonstrating 100% larvicidal efficacy of sarolaner. Skin lesions were healed 30 days post-treatment and new lesions were not observed.Conclusions – Sarolaner seems to be effective as larvicidal treatment for dogs with furuncular myiasis, reducing discomfort caused by the presence of the larva in the skin and facilitating its safe removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.