Gangliosides are sialic-acid-containing glycosphingolipids expressed on all vertebrate cells. They are primarily positioned in the plasma membrane with the ceramide part anchored in the membrane and the glycan part exposed on the surface of the cell. These lipids have highly diverse structures, not the least with respect to their carbohydrate chains, with N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc) being the two most common sialic-acid residues in mammalian cells. Generally, human healthy tissue is deficient in NeuGc, but this molecule is expressed in tumors and in human fetal tissues, and was hence classified as an onco-fetal antigen. Gangliosides perform important functions through carbohydrate-specific interactions with proteins, for example, as receptors in cell–cell recognition, which can be exploited by viruses and other pathogens, and also by regulating signaling proteins, such as the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), through lateral interaction in the membrane. Through both mechanisms, tumor-associated gangliosides may affect malignant progression, which makes them attractive targets for cancer immunotherapies. In this review, we describe how proteins recognize gangliosides, focusing on the molecular recognition of gangliosides associated with cancer immunotherapy, and discuss the importance of these molecules in cancer research.
Hypoxia is an important and common characteristic of many human tumors. It is a challenge clinically due to the correlation with poor prognosis and resistance to radiation and chemotherapy. Understanding the biochemical response to hypoxia would facilitate the development of novel therapeutics for cancer treatment. Here, we investigate alterations in gene expression in response to hypoxia by quantitative proteome analysis using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with LCMS/MS. Human HeLa cells were kept either in a hypoxic environment or under normoxic conditions. 125 proteins were found to be regulated, with maximum alteration of 18-fold. In particular, three clusters of differentially regulated proteins were identified, showing significant upregulation of glycolysis and downregulation of mitochondrial ribosomal proteins and translocases. This interaction is likely orchestrated by HIF-1. We also investigated the effect of hypoxia on the cell cycle, which shows accumulation in G1 and a prolonged S phase under these conditions. Implications. This work not only improves our understanding of the response to hypoxia, but also reveals proteins important for malignant progression, which may be targeted in future therapies.
Targeted cancer immunotherapy offers increased efficacy concomitantly with reduced side effects. One antibody with promising clinical potential is 14F7, which specifically recognises the NeuGc GM3 ganglioside. This antigen is found in the plasma membrane of a range of tumours, but is essentially absent from healthy human cells. 14F7 can discriminate NeuGc GM3 from the very similar NeuAc GM3, a common component of cell membranes. The molecular basis for this unique specificity is poorly understood. Here we designed and expressed 14F7-derived single-chain Fvs (scFvs), which retained the specificity of the parent antibody. Detailed expression and purification protocols are described as well as the synthesis of the NeuGc GM3 trisaccharide. The most successful scFv construct, which comprises an alternative variable light chain (VLA), allowed structure determination to 2.2 Å resolution. The structure gives insights into the conformation of the important CDR H3 loop and the suspected antigen binding site. Furthermore, the presence of VLA instead of the original VL elucidates how this subdomain indirectly stabilises the CDR H3 loop. The current work may serve as a guideline for the efficient production of scFvs for structure determination.
Immunotherapy is a growing field in cancer research. A privileged tumor-associated antigen that has received much attention is N-glycolyl (NeuGc) GM3. This ganglioside is present in several types of cancer, but is almost undetectable in human healthy tissues. However, its non-hydroxylated variant, NeuAc GM3, is abundant in all mammals. Due to a deletion in the human gene encoding the key enzyme for synthesis of NeuGc, humans, in contrast to other mammals, cannot synthesize NeuGc GM3. Therefore the presence of this ganglioside in human cancer cells represents an enigma. It has been shown that hypoxic conditions trigger the expression of NeuGc gangliosides, which not only serve as attractive targets for cancer therapy, but also as diagnostic and prognostic tumor marker. Here, we confirm hypoxia-induced expression of the NeuGc GM3 ganglioside also in HeLa cells and reveal several candidate proteins, in particular GM3 synthase and subunit B of respiratory complex II (SDHB), that may be involved in the generation of NeuGc GM3 by SILAC-based proteome analysis. These findings have the potential to significantly advance our understanding of how this enigmatic tumor-associated antigen is produced in humans, and also suggest a possible mechanism of action of anti-tumor antibodies that recognize hypoxia markers, such as 14F7.
Tumor hypoxia contributes to therapy resistance and metastatic progression of locally advanced rectal cancer (LARC). We postulated that the tumor mitochondrial metabolism, manifested by reactive oxygen species (ROS) and mitochondrial DNA (mtDNA) damage, reflects how hypoxic conditions connect to cancer-induced systemic inflammation and poor outcome. Levels of ROS and mtDNA damage were analyzed in three colorectal cancer (CRC) cell lines cultured for 24 hours under normoxia (21% O2) or hypoxia (0.2% O2) and serum sampled at the time of diagnosis from 35 LARC patients participating in a prospective therapy study. Compared with normoxia, ROS were significantly repressed and mtDNA damage was significantly enhanced in the hypoxic CRC cell lines; hence, a low ratio of ROS to mtDNA damage was an indicator of hypoxic conditions. In the LARC patients, low serum ROS were associated with elevated levels of circulating carcinoembryonic antigen and tumor choline concentration, both indicative of unfavorable biology, as well as adverse progression-free and overall survival. A low ratio of ROS to mtDNA damage in serum was associated with poor local tumor response to the neoadjuvant treatment and, of note, elevated systemic inflammation factors (C-reactive protein, the interleukin-1 receptor antagonist, and factors involved in tumor necrosis factor signaling), indicating that deficient treatment response locally and detrimental inflammation systemically link to a hypoxic mitochondrial metabolism. In conclusion, serum ROS and damaged mtDNA may be markers of the mitochondrial metabolism driven by the state of oxygenation of the primary tumor and possibly implicated in systemic inflammation and adverse outcome of LARC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.