Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.
Microglial cells are difficult to track during development due to the lack of specific reagents for myeloid sub-populations. To further understand how myeloid lineages differentiate during development to give rise to microglial cells, we investigated CX3CR1 and CCR2 transcription unit activation in Cx3cr1+/GFPCCR2+/RFP knock-in fluorescent protein reporter mice. The principal findings include: 1) CX3CR1+ cells localized to the AGM region, and visualized at E9.0 in the yolk sac and neuroectoderm, 2) At E10.5 CX3CR1 single positive microglial cells were visualized penetrating the neuroepithelium, 3) CX3CR1 and CCR2 distinguished infiltrating macrophages from resident surveillant or activated microglia within tissue sections and by flow cytometric analyses. Our results support the contribution of the yolk sac as source of microglial precursors. We provide a novel model to monitor chemokine receptor expression changes in microglia and myeloid cells early (E8.0-E10.5) in development and during inflammatory conditions, which have been challenging to visualize in mammalian tissues.
The goal of the study was to determine the association between diabetes and inflammation in clinically diagnosed diabetes patients. We hypothesized that low-grade inflammation in diabetes is associated with the level of glucose control. Using a cross-sectional design we compared pro and anti-inflammatory cytokines in a community recruited cohort of 367 Mexican Americans with type 2-diabetes having a wide range blood glucose levels. Cytokines (IL-6, TNF-α, IL-1β, IL-8) and adipokines (adiponectin, resistin and leptin) were measured using multiplex ELISA. Our data indicated that diabetes as whole was strongly associated with elevated levels of IL-6, leptin, CRP and TNF-α, whereas worsening of glucose control was positively and linearly associated with high levels of IL-6, leptin. The associations remained statistically significant even after controlling for BMI and age (p = 0.01). The association between TNF-α, however, was attenuated when comparisons were performed based on glucose control. Strong interaction effects between age and BMI and diabetes were observed for IL-8, resistin, and CRP. The cytokine/adipokine profiles of Mexican Americans with diabetes suggest an association between low-grade inflammation and quality of glucose control. Unique to in our population is that the chronic inflammation is accompanied by lower levels of leptin.
New antibiotics are needed to combat rising resistance, with new Mycobacterium tuberculosis (Mtb) drugs of highest priority. Conventional whole-cell and biochemical antibiotic screens have failed. We developed a novel strategy termed PROSPECT (PRimary screening Of Strains to Prioritize Expanded Chemistry and Targets) in which we screen compounds against pools of strains depleted for essential bacterial targets. We engineered strains targeting 474 Mtb essential genes and screened pools of 100-150 strains against activity-enriched and unbiased compounds libraries, measuring > 8.5-million chemical-genetic interactions. Primary screens identified > 10-fold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insight. We identified > 40 novel compounds targeting DNA gyrase, cell wall, tryptophan, folate biosynthesis, and RNA polymerase, as well as inhibitors of a novel target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating PROSPECT's ability to yield inhibitors against novel targets which would have eluded conventional drug discovery.
Background Although the biological basis for the increased susceptibility of diabetic patients to tuberculosis remains unclear, the world is undergoing a type 2 diabetes pandemic. We hypothesize that chronic hyperglycemia leads to immunocompromise that facilitates progression to active tuberculosis. To assess this possibility, we determined whether patients with tuberculosis and diabetes (particularly those with chronic hyperglycemia), compared with patients with tuberculosis who did not have diabetes, presented altered cytokine responses to a mycobacterial antigen. Methods Samples of whole blood from patients with tuberculosis and diabetes and from patients with tuberculosis who did not have diabetes was stimulated in vitro with purified protein derivative from Mycobacterium tuberculosis. We then determined whether there was an association between the levels of innate and adaptive cytokines secreted in response to the antigen and diabetes status, or diabetes with chronic hyperglycemia (measured by glycosylated hemoglobin level), after controlling for possible confounders. Results Innate and type 1 cytokine responses were significantly higher in patients with tuberculosis who had diabetes than in nondiabetic control subjects. The effect was consistently and significantly more marked in diabetic patients with chronic hyperglycemia. Conclusions These data provide preliminary evidence that type 2 diabetes, especially type 2 diabetes involving chronic hyperglycemia, is associated with an altered immune response to M. tuberculosis. More-detailed knowledge of the underlying mechanisms should focus on the effect of chronic hyperglycemia on the immune response to help in understanding the enhanced susceptibility of diabetic patients to tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.