BackgroundHeart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting.Methods and ResultsWe employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels.ConclusionsThus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.
Exercise training (ET) has beneficial effects on the myocardium in heart failure (HF) patients and in animal models of induced cardiac hypertrophy and failure. We hypothesized that if microRNAs (miRNAs) respond to changes following cardiac stress, then myocardial profiling of these miRNAs may reveal cardio-protective mechanisms of aerobic ET in HF. We used ascending aortic stenosis (AS) inducing HF in Wistar rats. Controls were sham-operated animals. At 18 wk after surgery, rats with cardiac dysfunction were randomized to 10 wk of aerobic ET (HF-ET) or to a heart failure sedentary group (HF-S). ET attenuated cardiac remodeling as well as clinical and pathological signs of HF with maintenance of systolic and diastolic function when compared with that of the HF-S. Global miRNA expression profiling of the cardiac tissue revealed 53 miRNAs exclusively dysregulated in animals in the HF-ET, but only 11 miRNAs were exclusively dysregulated in the HF-S. Out of 23 miRNAs that were differentially regulated in both groups, 17 miRNAs exhibited particularly high increases in expression, including miR-598, miR-429, miR-224, miR-425, and miR-221. From the initial set of deregulated miRNAs, 14 miRNAs with validated targets expressed in cardiac tissue that respond robustly to ET in HF were used to construct miRNA-mRNA regulatory networks that revealed a set of 203 miRNA-target genes involved in programmed cell death, TGF-β signaling, cellular metabolic processes, cytokine signaling, and cell morphogenesis. Our findings reveal that ET attenuates cardiac abnormalities during HF by regulating cardiac miRNAs with a potential role in cardio-protective mechanisms through multiple effects on gene expression.
Stimuli during pregnancy, such as protein restriction, can affect morphophysiological parameters in the offspring with consequences in adulthood. The phenomenon known as fetal programming can cause short- and long-term changes in the skeletal muscle phenotype. We investigated the morphology and the myogenic regulatory factors (MRFs) MyoD and myogenin expression in soleus, SOL; oxidative and slow twitching and in extensor digitorum longus, EDL; glycolytic and fast twitching muscles in the offspring of dams subjected to protein restriction during pregnancy. Four groups of male Wistar offspring rats were studied. Offspring from dams fed a low-protein diet (6 % protein, LP) and normal protein diet (17 % protein, NP) were euthanized at 30 and 112 days old, and their muscles were removed and kept at -80 °C. Muscles histological sections (8 μm) were submitted to a myofibrillar adenosine triphosphatase histochemistry reaction for morphometric analysis. Gene and protein expression levels of MyoD and myogenin were determined by RT-qPCR and western blotting. The major findings observed were distinct patterns of morphological changes in SOL and EDL muscles in LP offspring at 30 and 112 days old without changes in MRFs MyoD and myogenin expression. Our results indicate that maternal protein restriction followed by normal diet after birth induced morphological changes in muscles with distinct morphofunctional characteristics over the long term, but did not alter the MRFs MyoD and myogenin expression. Further studies are necessary to better understand the mechanisms underlying the maternal protein restriction response on skeletal muscle.
HF is syndrome initiated by a reduction in cardiac function and it is characterized by the activation of compensatory mechanisms. Muscular fatigue and dyspnoea are the more common symptoms in HF; these may be due in part to specific skeletal muscle myopathy characterized by reduced oxidative capacity, a shift from slow fatigue resistant type I to fast less fatigue resistant type II fibers and downregulation of myogenic regulatory factors (MRFs) gene expression that can regulate gene expression of nicotinic acetylcholine receptors (nAChRs). In chronic heart failure, skeletal muscle phenotypic changes could influence the maintenance of the neuromuscular junction morphology and nAChRs gene expression during this syndrome. Two groups of rats were studied: control (CT) and Heart Failure (HF), induced by a single intraperitoneal injection of monocrotaline (MCT). At the end of the experiment, HF was evaluated by clinical signs and animals were sacrificed. Soleus (SOL) muscles were removed and processed for morphological, morphometric and molecular NMJ analyses. Our major finding was an up-regulation in the gene expression of the alpha1 and epsilon subunits of nAChR and a spot pattern of nAChR in SOL skeletal muscle in this acute monocrotaline induced HF. Our results suggest a remodeling of nAChR alpha1 and epsilon subunit during heart failure and may provide valuable information for understanding the skeletal muscle myopathy that occurs during this syndrome.
SUMMARY:Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder characterized by the progressive loss of muscular strength. Mdx mutant mice show a marked deficiency in dystrophin, which was related to muscle membrane stability. The aim of this study was to verify the possible protective anti-inflammatory effect of citrus oil on mdx muscle fibers. Thus, adult male and female mdx mice (014/06-CEEA) were divided into control and citrus-treated. After 60 days of treatment, one ml of blood was collected for creatine kinase (CK) test. Diaphragm, sternomastoideus, anterior tibial and gastrocnemius muscles were removed and processed according to histological routine methods. The observed alterations indicate a direct effect of citrus. Recent studies have improved the diagnosis of muscular diseases but with no definitions of efficient treatments. Intervention with several therapies is important to many patients presenting muscular dystrophy, which enables them to live longer and be more active, while there is no development of gene therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.