Highly organized supercrystals of Au nanorods with plasmonic antennae enhancement of electrical field have made possible fast direct detection of prions in complex biological media such as serum and blood. The nearly perfect three-dimensional organization of nanorods render these systems excellent surface enhanced Raman scattering spectroscopy substrates with uniform electric field enhancement, leading to reproducibly high enhancement factor in the desirable spectral range.S urface enhanced Raman scattering (SERS) spectroscopy is not only one of the most sensitive analytical techniques but also can be used under biological conditions. Additionally, SERS signals are strongly dependent on conformational changes in macromolecules such as proteins (1). Unfortunately, although SERS of proteins has been consistently investigated during the last decade (2-6), enhancement factors (EFs) obtained for most conventional (nonfluorescent) proteins are still insufficient for their direct detection in complex biological media (7). There are two additional very serious challenges as well. Both quantitative detection by SERS and reproducible geometry of the "hot spots" necessary for SERS are difficult to achieve. The way to solve these challenges is to design and fabricate a highly organized photonic structure (8) that provides a high electromagnetic field enhancement in a reproducible geometry (9, 10). Recent demonstration of near-field focalization by nanoantennas (11,12) has paved the way for development of ultrasensitive SERS substrates that can concentrate the near field within certain confined regions, allowing one to obtain extremely high EFs (13-15). Such a nanoantenna effect was predicted and found for nanorod (NR) dimers, where the maximum focalization is present at the NR tips (16,17). One can hypothesize, therefore, that a highly organized system of NRs (18-21) acting as an extended nanoantenna may provide resolution for the SERS challenges of proteins or their segments. In turn, this hypothesis can lead to significant technological development for relevant biomedical problems. One example of those problems is the presymptomatic detection of scrambled prions directly in biological fluids.Prions are hard-to-detect infectious agents that cause a number of fatal neurodegenerative diseases in mammalians such as bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt-Jakob disease (CJD) of humans (22), and recently traced as well to other neurodegenerative syndromes as Alzheimer's (23) and Parkinson (24). Invariably, all of these diseases involve the modification of the endogenous and functional prion protein (PrP C ) into a nonfunctional but much more stable form (PrP SC ) giving rise to the so-called amyloid plaques in the brain and other nervous tissues (25). Detection of its presence for contention in cattle or diagnosis in humans or blood transfusion banks (26) is very difficult even by state-of-the-art immunological methods such as fluorescence immunoassay, RIA, or ELISA (27) or protein misfolding c...
This review article presents a general view of the recent progress in the fast developing area of surface-enhanced Raman scattering spectroscopy as an analytical tool for the detection and identification of molecular species in very small concentrations, with a particular focus on potential applications in the biomedical area. We start with a brief overview of the relevant concepts related to the choice of plasmonic nanostructures for the design of suitable substrates, their implementation into more complex materials that allow generalization of the method and detection of a wide variety of (bio)molecules and the strategies that can be used for both direct and indirect sensing. In relation to indirect sensing, we devote the final section to a description of SERS-encoded particles, which have found wide application in biomedicine (among other fields), since they are expected to face challenges such as multiplexing and high-throughput screening.
Development of multifunctional drug delivery vehicles with therapeutic and imaging capabilities as well as in-situ methods of monitoring of intracellular processes will greatly benefit from a simple method of preparation of plasmonic Au structures with nanometer scale gaps between sharp metallic elements where the so called SERS hot spots can be formed. Here the synthesis of gold lace capsules with average diameters ca. 100 nm made of a network of metallic branches 3–5 nm wide and separated by 1–3 nm gaps is reported. Biocompatible amphiphilic polyurethanes (PUs) were used as template for these particles. The unusual topology of the produced gold lace shells somewhat reminiscent of Fabergé eggs is likely to reflect the network of hydrophobic and hydrophilic domains of PU globules. The gold lace develops from initial open web-like structures by gradual enveloping the PU template. The diameter of gold lace shell is determined by the size of PUs in water and can be adjusted by the molecular mass of PUs. The close proximity between branches makes them excellent supports for surface enhanced Raman spectroscopy (SERS) which was demonstrated using 1-naphthalenethiol upon excitation with photons with different wavelengths. The loading and releasing of pyrene as a model of hydrophobic drugs and the use of SERS to monitor it were demonstrated.
We describe the design and fabrication of composite agarose gels, highly loaded with silver nanoparticles. Because the gel can collapse upon drying and recover when rehydrated, it can be foreseen as an excellent mechanical molecular trap that additionally gives rise to dynamic hot spots as the network volume decreases and the silver particles get close to each other, thereby generating the high electromagnetic fields that are needed for ultradetection. Additionally, as silver nanoparticles are physically trapped inside the polymer network, analytes can be washed out by dialysis when immersed in a washing solution, so that recycling can be achieved. Finally, the use of SERS for ultradetection of dichlorodiphenyl-trichloroethane (DDT) is reported for the first time, demonstrating the ability of this novel nanocomposite material to reversibly sequester nonconventional SERS analytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.