En medicina la información de las imágenes diagnósticas es vital e imprescindible, por este motivo es necesario procesarlas sin que existan márgenes de error que interfieran con su lectura y análisis. En términos generales: las imágenes presentan redundancia entre píxeles lo cual hace que ocupen un tamaño considerable que va desde los Megabytes (MB) hasta los Gigabytes (GB); el proceso de transmitirlas a través de la red se dificulta en términos de almacenamiento y coste computacional, por ende se deben aplicar procesos de compresión sin pérdidas útiles para reducir el ancho de banda, mejorar la capacidad de almacenamiento e incrementar la velocidad de transmisión sin afectar la calidad de la imagen diagnóstica. La propuesta de este artículo se basa en una revisión sistemática en la que se sintetiza y expone las características, ventajas y desventajas, de las técnicas de extracción de las regiones de interés (ROI), los algoritmos híbridos de compresión sin pérdidas de imágenes de MRI (Magnetic Resonance Imaging) y, por último, se toma como referencia la transformada Wavelet y las aplicaciones propuestas, a futuro, por los investigadores de los artículos revisados; entre las técnicas utilizadas destacan: EWT (Empirical Wavelet Transform), EZW (Embedded Zero Trees of Wavelet), SPIHT (Set partitioning in Hierarchical Trees) y el algoritmo híbrido-derivado como lo es: EWISTARS (Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift) finalmente la selección y extracción automática de una ROI se realiza, mediante operaciones morfológicas, como la operación de apertura y segmentación de nivel. Para evaluar la calidad de estas técnicas se describen las métricas de rendimiento MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio) y CR (Compression Ratio). Los resultados de esta investigación serán de utilidad para que los investigadores, que estén incursionando en el área, puedan ampliar su visión acerca del procesamiento de imágenes médicas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.