Chorionic gonadotropin (CG) is an early embryo-derived signal that is known to support the corpus luteum. An in vivo baboon model was used to study the direct actions of human CG (hCG) on the endometrium, during the periimplantation period. Endometrial gene expression was analyzed using microarrays. The endometrial biopsies were taken from hCG-treated (n = 5) and control (n = 6) animals on d 10 after ovulation. Class comparison identified 61 genes whose transcript levels differed between control and hCG-treated samples (48 increased, 13 decreased in mean expression level more than 2.5-fold; P < 0.01). Real-time PCR of transcript abundance confirmed up-regulation of several of these, including SerpinA3, matrix metalloproteinase 7, leukemia inhibitory factor (LIF), IL-6, and Complement 3 (P = 0.05). Analysis of protein abundance in endometrial flushings showed increased LIF and IL-6 protein in uterine flushings from hCG-treated animals compared with controls. Complement C3 and Superoxide dismutase 2 that were also up-regulated, were further evaluated by immunocytochemistry. Complement C3 showed a marked increase in stromal staining in response to hCG, whereas and superoxide dismutase 2 localization was most markedly increased in the glandular epithelial cells. Expression of Soluble Frizzled Related Protein 4, the most highly down-regulated gene, was also validated by PCR. Our experiments have shown that hCG induces alterations in the endometrial expression of genes that regulate embryo attachment, extracellular matrix remodeling and the modulation of the immune response around the implanting blastocyst. Several of these genes, including LIF and gp130, have been shown to be essential for implantation in other species. This study provides strong evidence that the preimplantation embryo itself influences the development of the receptive endometrium via secreted paracrine signals.
Both human chorionic gonadotropin (hCG) and IL-1beta induce changes in the endometrium that are associated with the establishment of pregnancy. We investigated the synergistic effect of these two embryonic signals on endometrial function using a baboon model of simulated pregnancy. Recombinant hCG (30 IU/d) was infused between d 6 and 10 post ovulation (PO) to mimic blastocyst transit. On the expected day of implantation (d 10 PO), IL-1beta (12 ng/d) or IL-1 receptor antagonist (IL-1Ra; 12 ng/d) was infused for an additional 5 d. Endometria were harvested on d 15 PO. Both hCG and hCG plus IL-1beta induced marked differences in the distribution of alpha-smooth muscle actin, proliferation marker Ki67, decidualization marker IGF-binding protein-1, and cyclooxygenase-1. The most marked effect of IL-1beta was the induction of IGF-binding protein-1 protein in stromal cells close to the apical surface, whereas cyclooxygenase-1 was down-regulated in the glandular epithelium. Protein arrays of uterine flushings showed significant suppression of death receptors, Fas and TNF receptor 1, in the hCG- with or without IL-1beta-treated groups, suggesting an inhibition of apoptosis. Additionally, cytotoxic T lymphocyte antigen-4, matrix metalloproteinase-3, and IL-4 were suppressed in treated animals compared with controls. However, no differences were observed in cytokine profile between hCG-treated and hCG- plus IL-1beta-treated baboons. This study confirms that in preparation for pregnancy, the primate endometrium undergoes both morphological and functional changes, which are modulated by hCG and IL-1beta, that lead to the inhibition of apoptosis and the development of an immunotolerant environment. These changes suggest that infusion of IL-1beta at the time of implantation into the nonpregnant baboon treated with hCG synergizes with hCG and mimics the early endometrial events associated with the presence of an embryo.
Leptin, the 16-kDa protein product of the obese gene, was originally seen as an adipocyte-derived signaling molecule. Recently, it has been suggested to be involved in some functions during pregnancy, particularly in the placenta. In the present study, we investigated the role of leptin in the secretion of hCG, progesterone, and interleukin-6 (IL-6) by human term trophoblast cells in culture. Placentae were obtained from cesarean sections following uncomplicated pregnancies and used immediately after delivery. Leptin, hCG, progesterone, and IL-6 were measured by ELISA, RIA, and immunoradiometric assay in the cultured media of trophoblast cells cultured for 48 and 96 h. Leptin mRNA expression in these cultures was determined by reverse transcription-polymerase chain reaction. Recombinant human leptin added to primary cultures of human term placental trophoblast cells showed a stimulatory effect on hCG and IL-6 secretion and an inhibitory effect on progesterone secretion. Primary cultures of term trophoblast cells expressed leptin mRNA. All these findings suggest a role for leptin in human placental endocrine function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.