Psd1 is a plant defensin that has antifungal activity against several pathogenic and nonpathogenic fungi. Previous analysis of Psd1 chemical shift perturbations by nuclear magnetic resonance (NMR) spectroscopy demonstrated that this defensin interacts with phospholipids and the sphingolipid glucosylceramide isolated from Fusarium solani (GlcCer(Fusarium solani)). In this study, these interactions were evaluated by real-time surface plasmon resonance (SPR) analysis. The data obtained demonstrated that Psd1 could bind more strongly to small unilamellar vesicles (SUV)-containing GlcCer(Fusarium solani) than to SUV that was composed of phosphatidylcholine (PC) alone or was enriched with GlcCer that had been isolated from soybeans. An increase in the SPR response after cholesterol or ergosterol incorporation in PC-SUV was detected; however, SUV composed of PC:Erg (7:3; molar:molar) became unstable in the presence of Psd1, suggesting membrane destabilization. We also observed a lack of Psd1 internalization in Candida albicans strains that were deficient in the glucosyl ceramide synthase gene. Together, these data indicate that GlcCer is essential for Psd1 anchoring in the fungal plasma membrane as well as internalization.
Psd1 is a pea plant defensin which can be actively expressed in Pichia pastoris and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane. In this work, in vitroassays using B16F10 cells showed that labeled fluorescein isothiocyanate FITC-Psd1 internalized into live cultured cells and targeted the nucleus, which underwent fragmentation, exhibiting approximately 60% of cells in the sub-G0/G1 stage. This phenomenon was dependent on GlcCer, and the participation of cyclin-F was suggested. In a murine lung metastatic melanoma model, intravenous injection of Psd1 together with B16F10 cells drastically reduced the number of nodules at concentrations above 0.5 mg/kg. Additionally, the administration of 1 mg/kg Psd1 decreased the number of lung inflammatory cells to near zero without weight loss, unlike animals that received melanoma cells only. It is worth noting that 1 mg/kg Psd1 alone did not provoke inflammation in lung tissue or weight or vital signal losses over 21 days, inferring no whole animal cytotoxicity. These results suggest that Psd1 could be a promising prototype for human lung anti-metastatic melanoma therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.