Researcher and media alarms have caused plastic debris to be perceived as a major threat to humans and animals. However, although the waste of plastic in the environment is clearly undesirable for aesthetic and economic reasons, the actual environmental risks of different plastics and their associated chemicals remain largely unknown. Here we show how a systematic assessment of adverse outcome pathways based on ecologically relevant metrics for exposure and effect can bring risk assessment within reach. Results of such an assessment will help to respond to the current public worry in a balanced way and allow policy makers to take measures for scientifically sound reasons.
Diverse effects of nano-and microplastic (NMP) have been demonstrated in the laboratory. We provide a broad review of current knowledge on occurrence, measurement, modeling approaches, fate, exposure, effects, and effect thresholds as regard to microplastics in the aquatic environment. Using this information, we perform a 'proof of concept' risk assessment for NMP, accounting for the diversity of the material. New data is included showing how bioturbation affects exposure, and exposure is evaluated based on literature data and model analyses. We review exposure and effect data and provide a worst case risk characterization, by comparing HC 5 effect thresholds from 'all inclusive' Species Sensitivity Distributions (SSDs) with the highest environmental concentrations reported. HC 5 values show wide confidence intervals yet suggest that sensitive aquatic organisms in near-shore surface waters might be at risk.
The lack of standard approaches in microplastic research limits progress in the abatement of plastic pollution. Here, we propose and test rescaling methods that are able to improve the alignment of methods used in microplastic research. We describe a method to correct for the differences in size ranges as used by studies reporting microplastic concentrations and demonstrate how this reduces the variation in aqueous-phase concentrations caused by method differences. We provide a method to interchange between number, volume, and mass concentrations using probability density functions that represent environmental microplastic. Finally, we use this method to correct for the incompatibility of data as used in current species sensitivity distributions (SSDs), caused by differences in the microplastic types used in effect studies and those in nature. We derived threshold effect concentrations from such a corrected SSD for freshwater species. Comparison of the rescaled exposure concentrations and threshold effect concentrations reveals that the latter would be exceeded for 1.5% of the known surface water exposure concentrations worldwide. Altogether, this toolset allows us to correct for the diversity of microplastic, to address it in a common language, and to assess its risks as one environmental material.
In the literature, there is widespread consensus that methods in plastic research need improvement. Current limitations in quality assurance and harmonization prevent progress in our understanding of the true effects of microplastic in the environment. Following the recent development of quality assessment methods for studies reporting concentrations in biota and water samples, we propose a method to assess the quality of microplastic effect studies. We reviewed 105 microplastic effect studies with aquatic biota, provided a systematic overview of their characteristics, developed 20 quality criteria in four main criteria categories (particle characterization, experimental design, applicability in risk assessment, and ecological relevance), propose a protocol for future effect studies with particles, and, finally, used all the information to define the weight of evidence with respect to demonstrated effect mechanisms. On average, studies scored 44.6% (range 20–77.5%) of the maximum score. No study scored positively on all criteria, reconfirming the urgent need for better quality assurance. Most urgent recommendations for improvement relate to avoiding and verifying background contamination, and to improving the environmental relevance of exposure conditions. The majority of the studies (86.7%) evaluated on particle characteristics properly, nonetheless it should be underlined that by failing to provide characteristics of the particles, an entire experiment can become irreproducible. Studies addressed environmentally realistic polymer types fairly well; however, there was a mismatch between sizes tested and those targeted when analyzing microplastic in environmental samples. In far too many instances, studies suggest and speculate mechanisms that are poorly supported by the design and reporting of data in the study. This represents a problem for decision-makers and needs to be minimized in future research. In their papers, authors frame 10 effects mechanisms as “suggested”, whereas 7 of them are framed as “demonstrated”. When accounting for the quality of the studies according to our assessment, three of these mechanisms remained. These are inhibition of food assimilation and/or decreased nutritional value of food , internal physical damage , and external physical damage . We recommend that risk assessment addresses these mechanisms with higher priority.
Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 days single species bioassays were performed under environmentally relevant exposure conditions using polystyrene microplastics (20–500 μm) mixed with sediment at concentrations ranging from 0 to 40% sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no effects were found on the reproduction of Lumbriculus variegatus. No significant differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus, and Tubifex spp. However, G. pulex showed a significant reduction in growth (EC10 = 1.07% sediment dw) and microplastic uptake was proportional with microplastic concentrations in sediment. These results indicate that although the risks of environmentally realistic concentrations of microplastics may be low, they still may affect the biodiversity and the functioning of aquatic communities which after all also depend on the sensitive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.