Methylmalonic acidemia and propionic acidemia are organic acidemias biochemically characterized by predominant tissue accumulation of methylmalonic acid (MMA) and propionic acid (PA), respectively. Affected patients present predominantly neurological symptoms, whose pathogenesis is not yet fully established. In the present study we investigated the in vitro effects of MMA and PA on important parameters of lipid and protein oxidative damage and on the production of reactive species in synaptosomes from cerebrum of developing rats. Synaptosomes correspond to nerve terminals that have been used to investigate toxic properties of compounds on neuronal cells. The in vivo effects of intrastriatal injection of MMA and PA on the same parameters and on enzymatic antioxidant defenses, were also studied. MMA-induced in vitro and in vivo lipid peroxidation and protein oxidative damage. Furthermore, the lipid oxidative damage was attenuated or prevented, pending on the doses utilized, by the free radical scavengers α-tocopherol, melatonin and by the NMDA glutamate receptor antagonist MK-801, implying the involvement of reactive species and glutamate receptor activation in these effects. In addition, 2',7'-dichlorofluorescein diacetate oxidation was significantly increased in synaptosomes by MMA, reinforcing that reactive species generation is elicited by this organic acid. We also verified that glutathione peroxidase activity was inhibited by intrastriatal MMA injection. In contrast, PA did not induce any significant effect on all parameters examined in vitro and in vivo, implying a selective action for MMA. The present data demonstrate that oxidative stress is induced by MMA in vitro in nerve terminals and in vivo in striatum, suggesting the participation of neuronal cells in MMA-elicited oxidative damage.
C. granulata is a semiterrestrial crab that lives in the mesolittoral and the supralittoral zones of estuaries and faces hypoxia and anoxia when exposed to atmospheric air. The carbohydrate or protein content of the diets administered to the crabs induced different metabolic adjustments during anoxia and post-anoxia recovery period. During the first hour in anoxia a marked increase in L-lactate concentration in hemolymph was induced, followed by a reduction in its levels accompanied by two peaks in hepatopancreas gluconeogenic capacity. Anoxia exposure did not induce a reduction in the hepatopancreas phosphoenolpyruvate carboxykinase activity in either dietary group. Our results suggest that in anaerobiosis this crab uses the conversion of lactate to glucose in hepatopancreas to maintain the acid-base balance and the glucose supply. In post-anoxia recovery, the fate of L-lactate is the hepatopancreas gluconeogenesis in high protein maintained crabs. On the other hand, in the crabs maintained on carbohydrate-rich diet the L-lactate levels decreased gradually in the hemolymph during the post-anoxia recovery; however, the hepatopancreas gluconeogenesis did not increase. In both dietary groups, an increase in the gluconeogenic capacity of hepatopancreas occurred at 30 h of post-anoxia recovery.
An early step of target validation in antimicrobial drug discovery is to prove that a gene coding for a putative target is essential for pathogen's viability. However, little attention has been paid to demonstrate the causal links between gene essentiality and a particular protein function that will be the focus of a drug discovery effort. This should be considered an important step in target validation since a growing number of proteins are found to exhibit multiple and unrelated tasks. Here, we show that the Mycobacterium tuberculosis (Mtb) folB gene is essential and that this essentiality depends on the dihydroneopterin aldolase/epimerase activities of its protein product, the FolB protein from the folate biosynthesis pathway. The wild-type (WT) MtFolB and point mutants K99A and Y54F were cloned, expressed, purified and monitored for the aldolase, epimerase and oxygenase activities using HPLC. In contrast to the WT MtFolB, both mutants have neither aldolase nor epimerase activities in the conditions assayed. We then performed gene knockout experiments and showed that folB gene is essential for Mtb survival under the conditions tested. Moreover, only the WT folB sequence could be used as a rescue copy in gene complementation studies. When the sequences of mutants K99A or Y54F were used for complementation, no viable colonies were obtained, indicating that aldolase and/or epimerase activities are crucial for Mtb survival. These results provide a solid basis for further work aiming to develop new anti-TB agents acting as inhibitors of the aldolase/epimerase activities of MtFolB.
Free fatty acids are known for playing a crucial role in the development of insulin resistance. High fat intake is known for impairing insulin sensitivity; however, the effect of vegetable-oil injections have never been investigated. The present study investigated the effects of daily subcutaneous injections (100 microL) of soybean (SB) and sunflower (SF) oils, during 7 days. Both treated groups developed insulin resistance as assessed by insulin tolerance test. The mechanism underlying the SB- and SF-induced insulin resistance was shown to involve GLUT4. In SB- and SF-treated animals, the GLUT4 protein expression was reduced approximately 20% and 10 min after an acute in vivo stimulus with insulin, the plasma membrane GLUT4 content was approximately 60% lower in white adipose tissue (WAT). No effects were observed in skeletal muscle. Additionally, both oil treatments increased mainly the content of palmitic acid ( approximately 150%) in WAT, which can contribute to explain the GLUT4 regulations. Altogether, the present study collects evidence that those oil treatments might generate insulin resistance by targeting GLUT4 expression and translocation specifically in WAT. These alterations are likely to be caused due to the specific local increase in saturated fatty acids that occurred as a consequence of oil daily injections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.