Objective To report radiological findings observed in computed tomography (CT) and magnetic resonance imaging (MRI) scans of the first cases of congenital infection and microcephaly presumably associated with the Zika virus in the current Brazilian epidemic.Design Retrospective study with a case series.Setting Association for Assistance of Disabled Children (AACD), Pernambuco state, Brazil.Participants 23 children with a diagnosis of congenital infection presumably associated with the Zika virus during the Brazilian microcephaly epidemic.Main outcome measures Types of abnormalities and the radiological pattern of lesions identified on CT and MRI brain scans.Results Six of the 23 children tested positive for IgM antibodies to Zika virus in cerebrospinal fluid. The other 17 children met the protocol criteria for congenital infection presumably associated with the Zika virus, even without being tested for IgM antibodies to the virus—the test was not yet available on a routine basis. Of the 23 children, 15 underwent CT, seven underwent both CT and MRI, and one underwent MRI. Of the 22 children who underwent CT, all had calcifications in the junction between cortical and subcortical white matter, 21 (95%) had malformations of cortical development, 20 (91%) had a decreased brain volume, 19 (86%) had ventriculomegaly, and 11 (50%) had hypoplasia of the cerebellum or brainstem. Of the eight children who underwent MRI, all had calcifications in the junction between cortical and subcortical white matter, malformations of cortical development occurring predominantly in the frontal lobes, and ventriculomegaly. Seven of the eight (88%) children had enlarged cisterna magna, seven (88%) delayed myelination, and six each (75%) a moderate to severe decrease in brain volume, simplified gyral pattern, and abnormalities of the corpus callosum (38% hypogenesis and 38% hypoplasia). Malformations were symmetrical in 75% of the cases.Conclusion Severe cerebral damage was found on imaging in most of the children in this case series with congenital infection presumably associated with the Zika virus. The features most commonly found were brain calcifications in the junction between cortical and subcortical white matter associated with malformations of cortical development, often with a simplified gyral pattern and predominance of pachygyria or polymicrogyria in the frontal lobes. Additional findings were enlarged cisterna magna, abnormalities of corpus callosum (hypoplasia or hypogenesis), ventriculomegaly, delayed myelination, and hypoplasia of the cerebellum and the brainstem.
Objective To describe the clinical, radiological, and electromyographic features in a series of children with joint contractures (arthrogryposis) associated with congenital infection presumably caused by Zika virus.Design Retrospective case series study.Setting Association for Assistance of Disabled Children, Pernambuco state, Brazil.Participants Seven children with arthrogryposis and a diagnosis of congenital infection presumably caused by Zika virus during the Brazilian microcephaly epidemic.Main outcome measures Main clinical, radiological, and electromyographic findings, and likely correlation between clinical and primary neurological abnormalities.Results The brain images of all seven children were characteristic of congenital infection and arthrogryposis. Two children tested positive for IgM to Zika virus in the cerebrospinal fluid. Arthrogryposis was present in the arms and legs of six children (86%) and the legs of one child (14%). Hip radiographs showed bilateral dislocation in seven children, subluxation of the knee associated with genu valgus in three children (43%), which was bilateral in two (29%). All the children underwent high definition ultrasonography of the joints, and there was no evidence of abnormalities. Moderate signs of remodeling of the motor units and a reduced recruitment pattern were found on needle electromyography (monopolar). Five of the children underwent brain computed tomography (CT) and magnetic resonance imaging (MRI) and the remaining two CT only. All presented malformations of cortical development, calcifications predominantly in the cortex and subcortical white matter (especially in the junction between the cortex and white matter), reduction in brain volume, ventriculomegaly, and hypoplasia of the brainstem and cerebellum. MRI of the spine in four children showed apparent thinning of the cord and reduced ventral roots.Conclusions Congenital Zika syndrome should be added to the differential diagnosis of congenital infections and arthrogryposis. The arthrogryposis was unrelated to the abnormalities of the joints themselves, but was possibly of neurogenic origin, with chronic involvement of central and peripheral motor neurones leading to deformities as a result of fixed postures in utero. Based on the neurophysiological observations, we suggest two possible mechanisms: tropism of neurones, with involvement of peripheral and central motor neurones, or a relation with vascular disorders.
Background The implications of congenital Zika Virus (ZIKV) infections for pediatric neurodevelopment and behavior remain inadequately studied. The aim of this study is to investigate patterns of neurodevelopment and behavior in groups of children with differening severities of ZIKV-related microcephaly and children with prenatal ZIKV exposure in the absence of microcephaly. Methods We conducted a cross-sectional study, nested in a cohort, of 274 children (aged 10–45 months) who were born during the peak and decline of the microcephaly epidemic in Northeast Brazil. Participants were evaluated between February 2017 and August 2019 at two tertiary care hospitals in Recife, Pernambuco, Brazil. We analyzed the children in four groups assigned based on clinical and laboratory criteria: Group 1 had severe microcephaly; Group 2 had moderate microcephaly; Group 3 had prenatal ZIKVexposure confirmed by maternal RT-PCR testing but no microcephaly; and Group 4 was a neurotypical control group. Groups were evaluated clinically for neurological abnormalities and compared using the Survey of Wellbeing of Young Children (SWYC), a neurodevelopment and behavior screening instrument validated for use in Brazil. Children with severe delays underwent further evaluation with an adapted version of the SWYC. Results Based on the SWYC screening, we observed differences between the groups for developmental milestones but not behavior. Among the 114 children with severe microcephaly of whom 98.2% presented with neurological abnormalities, 99.1% were ‘at risk of development delay’ according to the SWYC instrument. Among the 20 children with moderate microcephaly of whom 60% presented with neurological abnormalities, 65% were ‘at risk of development delay’. For children without microcephaly, the percentages found to be ‘at risk of developmental delay’ were markedly lower and did not differ by prenatal ZIKV exposure status: Group 3 (N = 94), 13.8%; Group 4 (N = 46), 21.7%. Conclusions Among children with prenatal ZIKV exposure, we found a gradient of risk of development delay according to head circumference. Children with severe microcephaly were at highest risk for delays, while normocephalic ZIKV-exposed children had similar risks to unexposed control children. We propose that ZIKV-exposed children should undergo first-line screening for neurodevelopment and behavior using the SWYC instrument. Early assessment and follow-up will enable at-risk children to be referred to a more comprehensive developmental evaluation and to multidisciplinary care management.
Background: The implications of congenital Zika Virus (ZIKV) infections for pediatric neurodevelopment and behavior remain inadequately studied. The aim of this study is to investigate patterns of neurodevelopment and behavior in groups of children with differening severities of ZIKV-related microcephaly and children with prenatal ZIKV exposure in the absence of microcephaly.Methods: We conducted a cross-sectional study, nested in a cohort, of 274 children (aged 10-45 months) who were born during the peak and decline of the microcephaly epidemic in Northeast Brazil. Participants were evaluated between February 2017 and August 2019 at two tertiary care hospitals in Recife, Pernambuco, Brazil. We analyzed the children in four groups assigned based on clinical and laboratory criteria: Group 1 had severe microcephaly; Group 2 had moderate microcephaly; Group 3 had prenatal ZIKVexposure confirmed by maternal RT-PCR testing but no microcephaly; and Group 4 was a neurotypical control group. Groups were evaluated clinically for neurological abnormalities and compared using the Survey of Wellbeing of Young Children (SWYC), a neurodevelopment and behavior screening instrument validated for use in Brazil. Children with severe delays underwent further evaluation with an adapted version of the SWYC.Results: Based on the SWYC screening, we observed differences between the groups for developmental milestones but not behavior. Among the 114 children with severe microcephaly of whom 98.2% presented with neurological abnormalities, 99.1% were ‘at risk of development delay’ according to the SWYC instrument. Among the 20 children with moderate microcephaly of whom 60% presented with neurological abnormalities, 65% were ‘at risk of development delay’. For children without microcephaly, the percentages found to be ‘at risk of developmental delay’ were markedly lower and did not differ by prenatal ZIKV exposure status: Group 3 (N=94), 13.8%; Group 4 (N=46), 21.7%.Conclusions: Among children with prenatal ZIKV exposure, we found a gradient of risk of development delay according to head circumference. Children with severe microcephaly were at highest risk for delays, while normocephalic ZIKV-exposed children had similar risks to unexposed control children. We propose that ZIKV-exposed children should undergo first-line screening for neurodevelopment and behavior using the SWYC instrument. Early assessment and follow-up will enable at-risk children to be referred to a more comprehensive developmental evaluation and to multidisciplinary care management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.