Brazilian free‐tailed bats (Tadarida brasiliensis) form enormous summer breeding colonies, mostly in caves and under bridges, in south‐central Texas and northern Mexico. Their prey includes several species of adult insects whose larvae are known to be important agricultural pests, including the corn earworm or cotton bollworm (Helicoverpa zea). We estimate the bats' value as pest control for cotton production in an eight‐county region in south‐central Texas. Our calculations show an annual value of $741 000 per year, with a range of $121 000–$1 725 000, compared to a $4.6–$6.4 million per year annual cotton harvest.
The objective of this study was to compare the economic outcome of reproductive programs using estrus detection (ED), timed artificial insemination (TAI), or a combination of both (TAI-ED) using a stochastic dynamic Monte-Carlo simulation model. Programs evaluated were (1) ED only; (2) TAI: Presynch-Ovsynch for first AI, and Ovsynch for resynchronization of open cows at 32 d after AI; (3) TAI-ED: Presynch-Ovsynch for first AI, but cows underwent ED and AI after first AI, and cows diagnosed open 32 d after AI were resynchronized using Ovsynch. Evaluated were the effect of ED rate (40 vs. 60%; ED40 or ED60), accuracy of estrus detection (85 vs. 95%), compliance with the timed AI protocol (85 vs. 95%), and milk price ($0.33 vs. 0.44/kg). Conception rate to first service was set at 33.9% and then decreased by 2.6% for every subsequent service. Abortion was set at 11.3%. Cows were not AI after 366 d in milk, and open cows were culled after 450 d in milk. Culled cows were immediately replaced. Herd size was maintained at 1,000 cows, and the model accounted for all incomes and costs. Simulation was performed until steady state was reached (3,000 d), and then average daily values for the subsequent 2,000 d were used to calculate profit/cow per year. Net daily value was calculated by subtracting the costs (replacement, feeding, breeding, and other costs) from the daily income (milk sales, cow sales, and calf sales). The ED40 models resulted in greater profits than the TAI-85 model but lower profits than the TAI-95 model. Both ED60 models resulted in greater profits than the TAI-95 model. Combining TAI and ED increased profits within each level of accuracy or compliance. Adding TAI to ED would increase overall profit/cow per year by $46.8 to $74.7 with 40% ED, and by $8.9 to $30.5 with 60% ED. Adding ED to TAI would increase profit/cow per year by $64.2 to $99.4 with 85% compliance and by $31.8 to $59.7 with 95% compliance. Although combining TAI and ED increased profits within each level of accuracy or compliance, when evaluated separately, ED60 with 95% accuracy or TAI with 95% compliance were as profitable as or more profitable than TAI-ED with low ED, accuracy, or compliance. Therefore, producers can improve their profits by combining TAI and ED as reproductive management; however, if a herd can achieve high ED with high accuracy or have high compliance with injections, using only ED or TAI might be more profitable than trying to do both.
The role of bats or any generalist predator in suppressing prey populations depends on the predator's ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world's most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth's abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators.
Abstract. During the past 12 000 years agricultural systems have transitioned from natural habitats to conventional agricultural regions and recently to large areas of genetically engineered (GE) croplands. This GE revolution occurred for cotton in a span of slightly more than a decade during which a switch occurred in major cotton production areas from growing 100% conventional cotton to an environment in which 95% transgenics are grown. Ecological interactions between GE targeted insects and other insectivorous insects have been investigated. However, the relationships between ecological functions (such as herbivory and ecosystem transport) and agronomic benefits of avian or mammalian insectivores in the transgenic environment generally remain unclear, although the importance of some agricultural pest management services provided by insectivorous species such as the Brazilian free-tailed bat, Tadarida brasiliensis, have been recognized.We developed a dynamic model to predict regional-scale ecological functions in agricultural food webs by using the indicators of insect pest herbivory measured by cotton boll damage and insect emigration from cotton. In the south-central Texas Winter Garden agricultural region we find that the process of insectivory by bats has a considerable impact on both the ecology and valuation of harvest in Bacillus thuringiensis (Bt) transgenic and nontransgenic cotton crops. Predation on agricultural pests by insectivorous bats may enhance the economic value of agricultural systems by reducing the frequency of required spraying and delaying the ultimate need for new pesticides. In the Winter Garden region, the presence of large numbers of insectivorous bats yields a regional summer dispersion of adult pest insects from Bt cotton that is considerably reduced from the moth emigration when bats are absent in either transgenic or non-transgenic crops. This regional decrease of pest numbers impacts insect herbivory on a transcontinental scale. With a few exceptions, we find that the agronomics of both Bt and conventional cotton production is more profitable when large numbers of insectivorous bats are present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.