The scientific study of hate speech, from a computer science point of view, is recent. This survey organizes and describes the current state of the field, providing a structured overview of previous approaches, including core algorithms, methods, and main features used. This work also discusses the complexity of the concept of hate speech, defined in many platforms and contexts, and provides a unifying definition. This area has an unquestionable potential for societal impact, particularly in online communities and digital media platforms. The development and systematization of shared resources, such as guidelines, annotated datasets in multiple languages, and algorithms, is a crucial step in advancing the automatic detection of hate speech.
Over the past years, the amount of online offensive speech has been growing steadily. To successfully cope with it, machine learning is applied. However, ML-based techniques require sufficiently large annotated datasets. In the last years, different datasets were published, mainly for English. In this paper, we present a new dataset for Portuguese, which has not been in focus so far. The dataset is composed of 5,668 tweets. For its annotation, we defined two different schemes used by annotators with different levels of expertise. First, non-experts annotated the tweets with binary labels ('hate' vs. 'no-hate'). Then, expert annotators classified the tweets following a fine-grained hierarchical multiple label scheme with 81 hate speech categories in total. The inter-annotator agreement varied from category to category, which reflects the insight that some types of hate speech are more subtle than others and that their detection depends on personal perception. The hierarchical annotation scheme is the main contribution of the presented work, as it facilitates the identification of different types of hate speech and their intersections. To demonstrate the usefulness of our dataset, we carried a baseline classification experiment with pre-trained word embeddings and LSTM on the binary classified data, with a state-of-the-art outcome.
In this paper we analyze the information propagated through three social networks. Previous research has shown that most of the messages posted on Twitter are truthful, but the service is also used to spread misinformation and false rumors. In this paper we focus on the search for automatic methods for assessing the relevance of a given set of posts. We first retrieved from social networks, posts related to trending topics. Then, we categorize them as being news or as being conversational messages, and assessed their credibility. From the gained insights we used features to automatically assess whether a post is news or chat, and to level its credibility. Based on these two experiments we built an automatic classifier. The results from assessing our classifier, which categorizes posts as being relevant or not, lead to a high balanced accuracy, with the potential to be further enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.