Highlights d Single-cell RNA-sequencing identifies cell populations involved in muscle regeneration d Muscle stem/progenitor cells form a hierarchy with stagespecific regulatory programs d Bioinformatic analysis identified paracrine factors influencing muscle stem cells d Syndecan-1/2/4 coordinate paracrine ligand-specific muscle progenitor proliferation
Muscle stem cells (MuSCs) are an essential adult stem cell population with the capacity to self-renew and regenerate muscle tissue. Functionally heterogeneous subpopulations of MuSCs have been identified based on their expression of myogenic regulatory factors and surface markers. However, a unified organization of muscle stem and progenitor cells and their subpopulations remains unresolved.Here, we performed temporal analysis of skeletal muscle regeneration using single-cell RNA-sequencing (scRNA-seq) of myotoxin-injured adult mouse hindlimb muscles. We generated over 34,000 single-cell transcriptomes spanning four muscle regeneration time-points and identified 15 distinct cell types, including a heterogeneous population of MuSCs and progenitor cells. Our analysis provides a hierarchical map of myogenic cell populations and identifies stage-specific regulatory programs that govern their contributions to muscle regeneration. In this transcriptomic atlas, we observed cell type-specific regenerative dynamics, exemplified by waves of transient amplification and diversification of multiple immune cell types and, subsequently, myogenic cells. Unbiased trajectory inference organized the myogenic cell populations within the atlas into a continuum, consisting of a hierarchy of quiescent MuSCs, cycling progenitors, committed myoblasts, and terminally differentiated myocytes. This myogenic trajectory matched prior understanding and also revealed that MuSC stages are defined by synchronous changes in regulatory factors, cell cycle-associated, and surface receptor gene expression. Lastly, we analyzed the transcriptomic atlas to identify over 100 candidate heterotypic communication signals between myogenic and non-myogenic cell populations, including many involving the fibroblast growth factor (FGF), Notch, and Syndecan receptor families and their associated ligands. Syndecan receptors were implicated in a large fraction of these cell communication interactions and were observed to exhibit transcriptional heterogeneity within the myogenic continuum. Using multiparameter mass cytometry (CyTOF), we confirmed that cycling MuSCs exhibit diversified Syndecan-1/2 expression, which suggests that dynamic alterations in Syndecan signaling interactions may coordinate stage-specific myogenic cell fate regulation. This scRNA-seq reference atlas provides a resolved hierarchical organization of myogenic subpopulations as a resource to investigate cell-cell interactions that regulate myogenic stem and progenitor cell fates in muscle regeneration.suggest that myogenic stem/progenitor cell lineage can be interpreted as a continuum of hierarchical cell states. However, it remains an unresolved challenge how global profiles in cell cycle mediators, regulatory factors and surface markers define this myogenic continuum.Recent advances in single-cell analyses and algorithms provide potent new strategies to infer cell differentiation trajectories (Hwang et al., 2018;Wagner et al., 2016). Here, we generated a single-cell transcriptomic atlas of mous...
SUMMARY During aging, there is a progressive loss of volume and function in skeletal muscle that impacts mobility and quality of life. The repair of skeletal muscle is regulated by tissue-resident stem cells called satellite cells (or muscle stem cells [MuSCs]), but in aging, MuSCs decrease in numbers and regenerative capacity. The transcriptional networks and epigenetic changes that confer diminished regenerative function in MuSCs as a result of natural aging are only partially understood. Herein, we use an integrative genomics approach to profile MuSCs from young and aged animals before and after injury. Integration of these datasets reveals aging impacts multiple regulatory changes through significant differences in gene expression, metabolic flux, chromatin accessibility, and patterns of transcription factor (TF) binding activities. Collectively, these datasets facilitate a deeper understanding of the regulation tissue-resident stem cells use during aging and healing.
Significance Skeletal muscle is one of the largest tissues in the body and can regenerate when damaged through a population of resident muscle stem cells. A type of muscle trauma called volumetric muscle loss overwhelms the regenerative capacity of muscle stem cells and engenders fibrotic supplantation. A comparison of muscle injuries resulting in regeneration or fibrosis revealed that intercellular communication between neutrophils and natural killer cells impacts muscle stem cell-mediated repair. Perturbation of neutrophil–natural killer cell interactions resulted in a variation of healing outcomes and suggested that immunomodulatory interventions can be effective to prevent aberrant healing outcomes.
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs), however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout – Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.