Edited by Roger J. ColbranPhosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2 BAT ), which consists of two cystathionine -synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disclike homodimer of CNNM2 BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg 2؉ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.
The cyclin and cystathionine β-synthase (CBS) domain magnesium transport mediators, CNNMs, are key players in maintaining the homeostasis of magnesium in different organs. The human family includes four members, whose impaired activity causes diseases such as Jalili Syndrome or Familial Hypomagnesemia, but is also linked to neuropathologic disorders, altered blood pressure, and infertility. Recent findings demonstrated that CNNMs are associated with the highly oncogenic phosphatases of the regenerating liver to promote tumor growth and metastasis, which has attracted renewed focus on their potential exploitation as targets for cancer treatment. However, the exact function of CNNMs remains unclear and is subject to debate, proposed as either direct transporters, sensors, or homeostatic factors. This review gathers the current structural knowledge on the CNNM family, highlighting similarities and differences with the closely related structural partners such as the bacterial Mg2+/Co2+ efflux protein CorC and the Mg2+ channel MgtE.
Classical homocystinuria (HCU) is the most common loss-of-function inborn error of sulfur amino acid metabolism. HCU is caused by a deficiency in enzymatic degradation of homocysteine, a toxic intermediate of methionine transformation to cysteine, chiefly due to missense mutations in the cystathionine beta-synthase (CBS) gene. As with many other inherited disorders, the pathogenic mutations do not target key catalytic residues, but rather introduce structural perturbations leading to an enhanced tendency of the mutant CBS to misfold and either to form nonfunctional aggregates or to undergo proteasome-dependent degradation. Correction of CBS misfolding would represent an alternative therapeutic approach for HCU. In this review, we summarize the complex nature of CBS, its multi-domain architecture, the interplay between the three cofactors required for CBS function [heme, pyridoxal-5'-phosphate (PLP), and S-adenosylmethionine (SAM)], as well as the intricate allosteric regulatory mechanism only recently understood, thanks to advances in CBS crystallography. While roughly half of the patients respond to treatment with a PLP precursor pyridoxine, many studies suggested usefulness of small chemicals, such as chemical and pharmacological chaperones or proteasome inhibitors, rescuing mutant CBS activity in cellular and animal models of HCU. Non-specific chemical chaperones and proteasome inhibitors assist in mutant CBS folding process and/or prevent its rapid degradation, thus resulting in increased steady-state levels of the enzyme and CBS activity. Recent interest in the field and available structural information will hopefully yield CBS-specific compounds, by using high-throughput screening and computational modeling of novel ligands, improving folding, stability, and activity of CBS mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.