Introducción: Debido a ambigüedades en la nomenclatura, las infecciones respiratorias agudas bajas (IRAB) en la infancia frecuentemente no son debidamente registradas, especialmente durante las consultas ambulatorias. Contar con una herramienta que las identifique con precisión, permitirá evaluar el impacto en la salud respiratoria de noxas de alcance masivo y diseñar las políticas para prevenirlas o mitigar sus efectos.
Nuestro objetivo fue construir un algoritmo que permita identificar niños con IRAB a partir de los datos de la historia clínica electrónica (HCE) del Gobierno de la Ciudad de Buenos Aires (GCBA).
Métodos: Utilizando la HCE-GCBA, se seleccionaron aleatoriamente 1000 consultas ambulatorias de pacientes menores de 2 años. Se buscaron términos que hicieran referencia a que la consulta era motivada por IRAB, con los que se desarrolló un algoritmo basado en reglas duras. Se utilizó otro set de datos de 800 consultas para ajustar el algoritmo y, finalmente, se validó su desempeño en un tercer set de 800 consultas correspondientes a todo el año 2018.
Resultados: En el set de validación, la herramienta desarrollada identificó IRAB con sensibilidad 88,24%, especificidad 97,5%, VPP 86,07% y VPN 97,93%.
Conclusión: El algoritmo de búsqueda desarrollado permite identificar con aceptable precisión las consultas ambulatorias relacionadas con IRAB en niños menores de 2 años.
Introduction: During the COVID-19 pandemic, pediatric visits
due to acute lower respiratory infections (ALRIs) decreased, but most
reports are from hospitalized patients. There is little information on
this phenomenon in outpatients, who are the majority in IRABs. We
evaluated the impact of the COVID-19 pandemic on ALRIs related
outpatient visits in the City of Buenos Aires. Methods:
Observational study including all outpatient visits of children under 2
years of age to the public health system of the City of Buenos Aires,
between Jan 01, 2018 and Dec 31, 2022. We estimated the total number
visits and the ALRIs-related visits, and their distribution throughout
the study period. Results: A total of 704,426 visits were
registered, 7.38% of them due to ALRIs. ALRIs-related visits decreased
from the implementation of a national lockdown (2020) and increased
again as the restriction measures decreased, particularly the return to
full school attendance (2021). In general, the proportion of
ALRIs-related vists was significantly higher in the cold months than in
the warm ones (9.8% vs. 5.5%; OR: 1.76, 95%CI: 1.73-1.79;
p<0.001). This difference was observed before (2018, 2019) and
after the pandemic (2022), but not in 2020-2021. The peak of
ALRIs-related visits occurred in the cold months in pre-pandemic years
(2018-2019), did not appear in 2020, reappeared delayed in 2021 and
recovered seasonality in 2022. Conclusion: Outpatient
ALRIs-related visits decreased significantly in the city of Buenos Aires
during the COVID-19 pandemic and currently seem to have recovered their
magnitude and seasonality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.