Infections caused by ceftolozane/tazobactam and ceftazidime/avibactam-resistant
P. aeruginosa
infections are an emerging concern. We aimed to analyze the underlying ceftolozane/tazobactam and ceftazidime/avibactam resistance mechanisms in all MDR/XDR
P. aeruginosa
isolates recovered during one year (2020) from patients with a documented
P. aeruginosa
infection. Fifteen isolates showing ceftolozane/tazobactam and ceftazidime/avibactam resistance were evaluated. Clinical conditions, previous positive cultures and β-lactams received in the previous month were reviewed for each patient. MICs were determined by broth microdilution. MLSTs and resistance mechanisms were determined using short- and long-read WGS. The impact of PDCs on β-lactam resistance was demonstrated by cloning into an
ampC
-deficient PAO1 derivative (PAOΔC) and construction of 3D models. Genetic support of acquired β-lactamases was determined
in silico
from high-quality hybrid assemblies. In most cases, the isolates were recovered after treatment with ceftolozane/tazobactam or ceftazidime/avibactam. Seven isolates from different STs owed their β-lactam resistance to chromosomal mutations and all displayed specific substitutions in PDC: Phe121Leu and Gly222Ser, Pro154Leu, Ala201Thr, Gly214Arg, ΔGly203-Glu219 and Glu219Lys. In the other eight isolates, the ST175 clone was overrepresented (6 isolates) and associated with IMP-28 and IMP-13, whereas two ST1284 isolates produced VIM-2. The cloned PDCs conferred enhanced cephalosporin resistance. 3D PDC models revealed rearrangements affecting residues involved in cephalosporin hydrolysis. Carbapenemases were chromosomal (VIM-2) or plasmid-borne (IMP-28, IMP-13), and associated with class-1 integrons located in Tn402-like transposition modules. Our findings highlight that cephalosporin/ß-lactamase inhibitors are potential selectors of MDR/XDR
P. aeruginosa
strains producing PDC variants or metallo-ß-lactamases. Judicious use of these agents is encouraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.