Aerosol particles play an important role in the climate system by absorbing and scattering radiation and influencing cloud properties. They are also one of the biggest sources of uncertainty for climate modeling. Many climate models do not include aerosols in sufficient detail due to computational constraints. To represent key processes, aerosol microphysical properties and processes have to be accounted for. This is done in the ECHAM-HAM (European Center for Medium-Range Weather Forecast-Hamburg-Hamburg) global climate aerosol model using the M7 microphysics, but high computational costs make it very expensive to run with finer resolution or for a longer time. We aim to use machine learning to emulate the microphysics model at sufficient accuracy and reduce the computational cost by being fast at inference time. The original M7 model is used to generate data of input–output pairs to train a neural network (NN) on it. We are able to learn the variables’ tendencies achieving an average
$ {R}^2 $
score of 77.1%. We further explore methods to inform and constrain the NN with physical knowledge to reduce mass violation and enforce mass positivity. On a Graphics processing unit (GPU), we achieve a speed-up of up to over 64 times faster when compared to the original model.
Despite the success of convolutional neural networks (CNNs) in many computer vision and image analysis tasks, they remain vulnerable against so-called adversarial attacks: Small, crafted perturbations in the input images can lead to false predictions. A possible defense is to detect adversarial examples. In this work, we show how analysis in the Fourier domain of input images and feature maps can be used to distinguish benign test samples from adversarial images. We propose two novel detection methods: Our first method employs the magnitude spectrum of the input images to detect an adversarial attack. This simple and robust classifier can successfully detect adversarial perturbations of three commonly used attack methods. The second method builds upon the first and additionally extracts the phase of Fourier coefficients of feature-maps at different layers of the network. With this extension, we are able to improve adversarial detection rates compared to state-of-the-art detectors on five different attack methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.