Previous studies have shown that high levels of air pollutants may increase activity of systemic lupus erythematosus (SLE). The aim of this study is to analyze the association between pollutants originating from the Brazilian Legal Amazon and SLE activity. This is a retrospective longitudinal cohort study with patients with SLE in the General Hospital in Cuiabá, Brazil. The association with SLE activity was measured using the SLE disease activity index (SLEDAI) and data on air quality—PM2.5 and CO, published on the websites of the State Department of Environment and the Center for Weather Forecasting and Climate Studies. To assess the effect of daily concentrations of pollutants on SLEDAI scores, the generalized estimation equation (GEE) model was used. A total of 32 female patients were assessed, in 96 doctor’s appointments. The average SLEDAI score was 6 points (±5.05). GEE showed an association of disease activity with both higher rates of wildfires (p = 0.021) and average CO rate (p = 0.013), but there was no statistical association between particulate levels and SLE activity. The results suggest that variations in air pollution are associated with the activity of autoimmune rheumatic diseases.
Background:Evidence suggests that DNA damage is implicated in the development of Systemic Lupus Erythematosus (SLE). Objective:Investigate the possible association of polymorphisms in the DNA repair genes XRCC1 and XRCC3 with SLE and its clinical and laboratory features. Methods:This is a case-control study comparing the polymorphisms in the DNA repair genes XRCC1 and XRCC3 in SLE patients and control individuals. Genotyping for DNA repair genes was performed by polymerase chain reaction-restriction fragment length polymorphism in 76 patients and 82 healthy control individuals. Results:Our data indicated that the genotype frequencies in patients with the XRCC1 Arg399Gln and XRCC3 Thr241Met polymorphisms were similar to those observed in the control group (p > 0.05). However, the frequencies of the 399Gln allele (p = 0.023, OR = 0.58, 95% CI = 0.36-0.93) and 241Met allele (p = 0.0039, OR = 0.59, 95% CI = 0.36-0.98) were significantly lower in the patients than those in the control subjects. Conclusion:We demonstrated that 399Gln and 241Met alleles may play a protective role in SLE susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.