Background: The Navigation Guide methodology was developed to meet the need for a robust method of systematic and transparent research synthesis in environmental health science. We conducted a case study systematic review to support proof of concept of the method.Objective: We applied the Navigation Guide systematic review methodology to determine whether developmental exposure to perfluorooctanoic acid (PFOA) affects fetal growth in humans.Methods: We applied the first 3 steps of the Navigation Guide methodology to human epidemiological data: 1) specify the study question, 2) select the evidence, and 3) rate the quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using prespecified criteria. We evaluated each study for risk of bias and conducted meta-analyses on a subset of studies. We rated quality and strength of the entire body of human evidence.Results: We identified 18 human studies that met our inclusion criteria, and 9 of these were combined through meta-analysis. Through meta-analysis, we estimated that a 1-ng/mL increase in serum or plasma PFOA was associated with a –18.9 g (95% CI: –29.8, –7.9) difference in birth weight. We concluded that the risk of bias across studies was low, and we assigned a “moderate” quality rating to the overall body of human evidence.Conclusion: On the basis of this first application of the Navigation Guide systematic review methodology, we concluded that there is “sufficient” human evidence that developmental exposure to PFOA reduces fetal growth.Citation: Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1028–1039; http://dx.doi.org/10.1289/ehp.1307893
Polybrominated diphenyl ethers (PBDEs) have been measured in the home environment and in humans, but studies linking environmental levels to body burdens are limited. This study examines the relationship between PBDE concentrations in house dust and serum from adults residing in these homes. We measured PBDE concentrations in house dust from 50 homes and in serum of male-female couples from 12 of the homes. Detection rates, dust-serum, and within-matrix correlations varied by PBDE congener. There was a strong correlation (r ) 0.65-0.89, p < 0.05) between dust and serum concentrations of several predominant PBDE congeners (BDE 47, 99, and 100). Dust and serum levels of BDE 153 were not correlated (r < 0.01). The correlation of dust and serum levels of BDE 209 could not be evaluated due to low detection rates of BDE 209 in serum. Serum concentrations of the sum of BDE 47, 99, and 100 were also strongly correlated within couples (r ) 0.85, p ) 0.0005). This study provides evidence that house dust is a primary exposure pathway of PBDEs and supports the use of dust PBDE concentrations as a marker for exposure to PBDE congeners other than BDE 153.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.