Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.
An ability to mimic the boundaries of biological compartments would improve our understanding of self-assembly and provide routes to new materials for the delivery of drugs and biologicals and the development of protocells. We show that short designed peptides can be combined to form unilamellar spheres approximately 100 nanometers in diameter. The design comprises two, noncovalent, heterodimeric and homotrimeric coiled-coil bundles. These are joined back to back to render two complementary hubs, which when mixed form hexagonal networks that close to form cages. This design strategy offers control over chemistry, self-assembly, reversibility, and size of such particles.
Protein engineering, chemical biology, and synthetic biology would benefit from toolkits of peptide and protein components that could be exchanged reliably between systems while maintaining their structural and functional integrity. Ideally, such components should be highly defined and predictable in all respects of sequence, structure, stability, interactions, and function. To establish one such toolkit, here we present a basis set of de novo designed α-helical coiled-coil peptides that adopt defined and well-characterized parallel dimeric, trimeric, and tetrameric states. The designs are based on sequence-to-structure relationships both from the literature and analysis of a database of known coiled-coil X-ray crystal structures. These give foreground sequences to specify the targeted oligomer state. A key feature of the design process is that sequence positions outside of these sites are considered non-essential for structural specificity; as such, they are referred to as the background, are kept non-descript, and are available for mutation as required later. Synthetic peptides were characterized in solution by circular-dichroism spectroscopy and analytical ultracentrifugation, and their structures were determined by X-ray crystallography. Intriguingly, a hitherto widely used empirical rule-of-thumb for coiled-coil dimer specification does not hold in the designed system. However, the desired oligomeric state is achieved by database-informed redesign of that particular foreground and confirmed experimentally. We envisage that the basis set will be of use in directing and controlling protein assembly, with potential applications in chemical and synthetic biology. To help with such endeavors, we introduce Pcomp, an on-line registry of peptide components for protein-design and synthetic-biology applications.
The ability to maintain interactions between soluble protein subunits in the gas phase of a mass spectrometer gives critical insight into the stoichiometry and interaction networks of protein complexes. Conversely, for membrane protein complexes in micelles, the transition into the gas phase usually leads to the disruption of interactions, particularly between cytoplasmic and membrane subunits, and a mass spectrum dominated by large aggregates of detergent molecules. We show that by applying nanoelectrospray to a micellar solution of a membrane protein complex, the heteromeric adenosine 5'-triphosphate (ATP)-binding cassette transporter BtuC2D2, we can maintain the complex intact in the gas phase of a mass spectrometer. Dissociation of either transmembrane (BtuC) or cytoplasmic (BtuD) subunits uncovers modifications to the transmembrane subunits and cooperative binding of ATP. By protecting a membrane protein complex within a n-dodecyl-beta-d-maltoside micelle, we demonstrated a powerful strategy that will enable the subunit stoichiometry and ligand-binding properties of membrane complexes to be determined directly, by precise determination of the masses of intact complexes and dissociated subunits.
The design of new proteins that expand the repertoire of natural protein structures represents a formidable challenge. Success in this area would increase understanding of protein structure, and present new scaffolds that could be exploited in biotechnology and synthetic biology. Here we describe the design, characterisation and X-ray crystal structure of a new coiled-coil protein. The de novo sequence forms a stand-alone, parallel, 6-helix bundle with a channel running through it. Although lined exclusively by hydrophobic leucine and isoleucine side chains, the 6 Å channel is permeable to water. One layer of leucine residues within the channel is mutable accepting polar aspartic acid (Asp) and histidine (His) side chains, and leading to subdivision and organization of solvent within the lumen. Moreover, these mutants can be combined to form a stable and unique (Asp-His)3 heterohexamer. These new structures provide a basis for engineering de novo proteins with new functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.