Molecular docking has been widely employed as a fast and inexpensive technique in the past decades, both in academic and industrial settings. Although this discipline has now had enough time to consolidate, many aspects remain challenging and there is still not a straightforward and accurate route to readily pinpoint true ligands among a set of molecules, nor to identify with precision the correct ligand conformation within the binding pocket of a given target molecule. Nevertheless, new approaches continue to be developed and the volume of published works grows at a rapid pace. In this review, we present an overview of the method and attempt to summarise recent developments regarding four main aspects of molecular docking approaches: (i) the available benchmarking sets, highlighting their advantages and caveats, (ii) the advances in consensus methods, (iii) recent algorithms and applications using fragment-based approaches, and (iv) the use of machine learning algorithms in molecular docking. These recent developments incrementally contribute to an increase in accuracy and are expected, given time, and together with advances in computing power and hardware capability, to eventually accomplish the full potential of this area.
Probing protein surfaces to accurately predict the binding site and conformation of a small molecule is a challenge currently addressed through mainly two different approaches: blind docking and cavity detection-guided docking. Although cavity detection-guided blind docking has yielded high success rates, it is less practical when a large number of molecules must be screened against many detected binding sites. On the other hand, blind docking allows for simultaneous search of the whole protein surface, which however entails the loss of accuracy and speed. To bridge this gap, in this study, we developed and tested BLinDPyPr, an automated pipeline which uses FTMap and DOCK6 to perform a hybrid blind docking strategy. Through our algorithm, FTMap docked probe clusters are converted into DOCK6 spheres for determining binding regions. Because these spheres are solely derived from FTMap probes, their locations are contained in and specific to multiple potential binding pockets, which become the regions that are simultaneously probed and chosen by the search algorithm based on the properties of each candidate ligand. This method yields pose prediction results (45.2–54.3% success rates) comparable to those of site-specific docking with the classic DOCK6 workflow (49.7–54.3%) and is half as time-consuming as the conventional blind docking method with DOCK6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.