Bacterial metabolism plays a fundamental role in gut microbiota ecology and host-microbiome interactions. Yet the metabolic capabilities of most gut bacteria have remained unknown. Here we report growth characteristics of 96 phylogenetically diverse gut bacterial strains across 4 rich and 15 defined media. The vast majority of strains (76) grow in at least one defined medium, enabling accurate assessment of their biosynthetic capabilities. These do not necessarily match phylogenetic similarity, thus indicating a complex evolution of nutritional preferences. We identify mucin utilizers and species inhibited by amino acids and short-chain fatty acids. Our analysis also uncovers media for in vitro studies wherein growth capacity correlates well with in vivo abundance. Further value of the underlying resource is demonstrated by correcting pathway gaps in available genome-scale metabolic models of gut microorganisms. Together, the media resource and the extracted knowledge on growth abilities widen experimental and computational access to the gut microbiota.
BackgroundYeasts are attractive expression platforms for many recombinant proteins, and there is evidence for an important interrelation between the protein secretion machinery and environmental stresses. While adaptive responses to such stresses are extensively studied in Saccharomyces cerevisiae, little is known about their impact on the physiology of Pichia pastoris. We have recently reported a beneficial effect of hypoxia on recombinant Fab secretion in P. pastoris chemostat cultivations. As a consequence, a systems biology approach was used to comprehensively identify cellular adaptations to low oxygen availability and the additional burden of protein production. Gene expression profiling was combined with proteomic analyses and the 13C isotope labelling based experimental determination of metabolic fluxes in the central carbon metabolism.ResultsThe physiological adaptation of P. pastoris to hypoxia showed distinct traits in relation to the model yeast S. cerevisiae. There was a positive correlation between the transcriptomic, proteomic and metabolic fluxes adaptation of P. pastoris core metabolism to hypoxia, yielding clear evidence of a strong transcriptional regulation component of key pathways such as glycolysis, pentose phosphate pathway and TCA cycle. In addition, the adaptation to reduced oxygen revealed important changes in lipid metabolism, stress responses, as well as protein folding and trafficking.ConclusionsThis systems level study helped to understand the physiological adaptations of cellular mechanisms to low oxygen availability in a recombinant P. pastoris strain. Remarkably, the integration of data from three different levels allowed for the identification of differences in the regulation of the core metabolism between P. pastoris and S. cerevisiae. Detailed comparative analysis of the transcriptomic data also led to new insights into the gene expression profiles of several cellular processes that are not only susceptible to low oxygen concentrations, but might also contribute to enhanced protein secretion.
BackgroundThe methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production.ResultsThe metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source.The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates.ConclusionsOverall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed methanol:multicarbon sources has been implemented, thus providing a new tool for the investigation of the relationships between central metabolism and protein production. Specifically, the study points at a limited but significant impact of the conformational stress associated to secretion of recombinant proteins on the central metabolism, occurring even at modest production levels.
Background: The yeast Saccharomyces cerevisiae is able to adjust to external oxygen availability by utilizing both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen is a major determinant of the physiology of S. cerevisiae but understanding of the oxygen dependence of intracellular flux distributions is still scarce.
Saccharomyces cerevisiae CEN.PK113-1A was grown in glucose-limited chemostat culture with 0%, 0.5%, 1.0%, 2.8% or 20.9% O2 in the inlet gas (D=0.10 h(-1), pH 5, 30 degrees C) to determine the effects of oxygen on 17 metabolites and 69 genes related to central carbon metabolism. The concentrations of tricarboxylic acid cycle (TCA) metabolites and all glycolytic metabolites except 2-phosphoglycerate+3-phosphoglycerate and phosphoenolpyruvate were higher in anaerobic than in fully aerobic conditions. Provision of only 0.5-1% O2 reduced the concentrations of most metabolites, as compared with anaerobic conditions. Transcription of most genes analyzed was reduced in 0%, 0.5% or 1.0% O2 relative to cells grown in 2.8% or 20.9% O2. Ethanol production was observed with 2.8% or less O2. After steady-state analysis in defined oxygen concentrations, the conditions were switched from aerobic to anaerobic. Metabolite and transcript levels were monitored for up to 96 h after the transition, and this showed that more than 30 h was required for the cells to fully adapt to anaerobiosis. Levels of metabolites of upper glycolysis and the TCA cycle increased following the transition to anaerobic conditions, whereas those of metabolites of lower glycolysis generally decreased. Gene regulation was more complex, with some genes showing transient upregulation or downregulation during the adaptation to anaerobic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.