A previous model developed by the authors investigates the growth patterns of keratinocyte cell colonies after they have been applied to a burn site using a spray technique. In this paper we investigate a simplified one-dimensional version of the model. This model yields travelling wave solutions and we analyse the behaviour of the travelling waves. Approximations for the rate of healing and maximum values for both the active healing and the healed cell densities are obtained.
Severe burns can be very traumatic for the patient, and while burns caused by industrial or domestic accidents are common, there are also increasing numbers of burns associated with terrorism. A novel technique to assist in the healing process is to spray skin cells, keratinocytes, that are cultured from the patient's own tissue, directly onto the burn site. This process involves taking some undamaged skin from the patient, allowing the skin cells to proliferate rapidly in the laboratory over a period of 5-10 days, harvesting and separating the cells and then spraying them onto the burn. This paper deals with keratinocytes that have been cultured in vitro for a short period of time (early passage cultured cells). The spraying process has yet to be optimised with respect to the seeding density required for fastest re-epithelisation and thus there is a need for this process to be modelled. In this paper, we review some of the skin biology and develop a mathematical model of the growth patterns of cell colonies after they have been applied using a aerosolised technique. The model allows us to predict coverage over time and can be used as a decision support tool for clinicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.